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Abstract 

Fresh produce (FP) is one of the most important items traded in most retail 

outlets due to its nutritional benefits. However, the downside of these products is 

that their quality depreciates over time which may mean losses for the retailers. In 

a bid to curb profit decline incurred by product waste, retailers have managed to 

leverage traditional timeseries forecasting to determine customers’ demand. This 

approach, however, is limited because it cannot capture the non-linearity in 

customers’ purchasing patterns, which makes deep learning techniques a viable 

alternative 

 The fresh produce supply chain network (FPSC) is complex and this thesis 

only focus on the post-harvest marketing operations of the network by leveraging 

deep learning (DL) models to determine the likely demand of FP and specifically, 

strawberry because of its difficulty in modelling.  

This demand forecast technique intricacies were explored systematically 

premised on the established characteristics of two major deep learning models: 

the Long Short Term Memory (LSTM) neural network— which uses the temporal 

relationship of data to make predictions and the Convolutional Neural Network 

with LSTM (CNN-LSTM)— which uses the spatio-temporal relationship of data to 

predict. 

Furthermore, a self-attention layer was added to the LSTM model and the 

LSTM portion of the CNN-LSTM in a bid to optimize them before making decision on 

the better model. To further strengthen the decision process, three key things 

were factored in determining the models’ (both the optimized and non-optimized) 

ability: their; respective error levels on the validation dataset using the mean 

absolute error as the metric, predictive ability with the test data using the 

coefficient of determination (R2-score) as the metrics and forecasting (across 

28weeks horizon) skill using R2-score.  

The outcome revealed the optimized version of LSTM, that is the self-

attention LSTM outperform other models in all ramifications. Although not part of 

the decision process, a two end of an argument was explored to observe the 

findings of a manual hyperparameter optimization or an automatic approach using 

the Bayesian optimization technique. This was done for the LSTM model alone. 
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Chapter 1 

1.1 Introduction 
 Achieving sustainability in supply chain management (SCM) is extremely 

difficult, especially in agri-food supply chains due to the lengthy procedures 

broadly classified as pre-harvesting and post-harvesting stages. Pre-harvesting 

factors such as soil water, soil fertility, amount of sunlight, weather, and so on 

determine yield (quantity produced or output), which is the most desired 

component in this stage. 

 The influence of yield extends beyond the pre-harvesting stage and serves 

as the foundation for all post-harvesting planning (supply and demand). Demand is 

defined as the quantity of goods or products that customers are willing to buy. 

Demand is an important factor in the post-harvesting stage because it can increase 

customer retention, reduce operational costs (transport, storage, labor, etc.), 

reduce waste, and increase revenue and profit, which is the primary goal of 

organizations. 

 Demand is critical; its uncertainty is a concern because of factors such as 

price changes, seasonality, and so on. To that end, demand can be viewed as 

central to agri-food supply chain decision-making. Forecasting is important for all 

decision-making tasks, according to Fatious et al. (2014), from inventory 

management and scheduling to planning and strategic management.  

Forecasting agricultural product sales is difficult due to the factors 

mentioned above. It is even more difficult for the fresh produce (FP) category of 

agricultural produce because of their susceptibility to spoilage, shorter life-cycle, 

and loss of quality and freshness as they remain on the shelf for longer periods of 

time. This is a major issue with FP sales that necessitates a cutting-edge solution. 

 In this study, the Long Short-Term Memory neural network (LSTM) and the 

hybrid Convolutional Neural Network with LSTM (CNN-LSTM) are used as base line 

models for predicting and forecasting future demand trends of FP using a twelve-

year old strawberry dataset from the US Department of Agriculture. The research 

of Okwuchi et al. (2020) led to the decision to consider these models.  
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The two models were improved by incorporating a self-attention layer. For the 

LSTM model, in addition to the manual hyperparameter tuning approach, the 

Bayesian process of automatic hyperparameter determinant was implemented and 

the results of the two techniques were compared. The coefficient of determinant 

score (R2-Score) and the mean absolute error (MAE) were used as the yardstick in 

the three experiments conducted to determine the best performing model.        

1.2 Problem Statement: 
It is estimated that 1.3 billion tons of food intended for human use are lost or 

wasted globally each year (FAO, 2011). The financial costs of such waste and the 

enormous sums of money lost when food is not consumed by people were 

acknowledged by Ventour (2008). In a world where it is encouraged to turn waste 

into wealth, producing waste (via food loss) from wealth (as measured by the 

monetary value of food) is counterproductive for businesses and others.   

Food loss is common along the entire food supply chain (FSC). Losses at the 

wholesale and retail level are one of three levels along the FSC that were 

mentioned by Buzby et al. (2009). They identified a number of factors, including 

inadequate supply and demand analysis and transportation infrastructure, as the 

architects of the losses at this level. In essence, an outstanding demand analysis 

and projections would have considered effective transportation systems as a 

constraint. Therefore, ineffective demand planning can be considered to be the 

main factor causing food loss at the retail level. 

Planning the demand efficiently would necessitate making predictions about 

expected future sales over a number of forecast horizons. For FPs, this can be 

challenging because their pre-harvest stage conditions have an impact on them, 

and even at the delivery stage, FPs need specialized transport conditions in 

addition to many other contributing elements. Profit maximization is every 

company's objective. However, there are several limiting factors, making it 

difficult and requiring complex approaches to forecast the likely demand for FP. In 

this study, the expected demand for weekly strawberries across the United States 

is modelled using the number of retail outlets announcing the availability of at 

least one unit of strawberry for sale every weekend on the United States 

Department of Agriculture (USDA) website.  
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1.3 Motivation: 
The retailing unit of the food supply chain (FSC) has a big impact since it is the 

one that is most in close proximity to consumers and helps to understand their 

behavior. It provides an insightful setting for resolving demand-related problems 

because it is the go-to unit for identifying the heart of consumer needs. 

Fruits and vegetables are most affected by food loss in supermarkets despite 

their significant contribution because they are more prone to spoiling, have a 

shorter shelf life, and are considerably more expensive to maintain. Loss of FP in 

this situation could result in understock: less product is available to satisfy 

consumer demand. Customer retention may suffer as a result. 

On the other hand, overstock—more product than is needed by customers—has 

its own financial repercussions. It raises storage and preservation costs and, 

regrettably, given the nature of FP, may ultimately result in waste. This has the 

result of raising operating costs and lowering profits. 

Whether to encourage customer retention or prevent profit minimization, 

achieving optimality in demand forecasting is the key to finding a balance between 

these two important but competing components. Specifically, estimating future 

demand that is neither too low to risk losing clients nor too high to create debts. 

This is the foundation from which the desire to conduct this investigation springs.  

Traditional timeseries approaches have been used to pursue this route 

(forecast) in the past, but nonlinearity in the data is a limiting factor that renders 

traditional methods ineffective and makes the employment of high-end machine 

learning (ML) techniques desirable. The adoption of these ML techniques has been 

facilitated by the data deluge and reasonable access to computational resources, 

which offer not just an improved decision support system for merchants looking to 

estimate probable demand, but also the ability to mitigate the downsides of 

overstocking and understocking. 
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1.4 Research Scope: 
The goal of this thesis is to create, improve, and pinpoint the best ML-based 

predictive models required to address the problem of retail outlets forecasting 

fresh produce demand. Key presumptions were made and strawberry data from the 

USDA was used. Convolutional Neural Network with LSTM (CNN-LSTM or C-LSTM) 

and Long Short Term Network (LSTM) are the two main models that have been 

developed. The models were tweaked in an effort to optimize them, and different 

combinations of their hyper-parameters have been logged to an online machine 

learning flow (MLFlow) server. To improve the models, a self-attention layer was 

also added. 

In particular, Bayesian optimization was utilized to automatically tune the 

LSTM model just to find the optimal setting for the hyper-parameters. The results 

were seen and contrasted with the manual method. The highest performing models 

(including the optimized models) were identified after a thorough experiment and 

evaluation utilizing mean absolute error (MAE), coefficient of determination (R2-

Score), and mean squared error (MSE). 

1.5 Research question, Aim and Objectives 
Research question: When using the coefficient of determination (R2-score) as 

a performance metric on the test dataset and the fundamental criteria for 

selection, which model—Long Short Term Memory (LSTM) or Convolutional Neural 

Network with LSTM (CNN-LSTM)—will perform better in predicting and forecasting 

the likely demand for strawberries after optimization with a self-attention 

mechanism? 

Aim: The main aim of this dissertation is to develop and test the performance 

of ML-based forecasting techniques for improved demand decision and planning for 

the retailers (supermarkets, etc.) dealing with the sales of this fresh produce 

(strawberries). To achieve this aim, the following objectives are pursued: 

1.) Gathering of data relevant to strawberry sales and identification of key 

features. 

2.) Building and optimization of the selected models for the forecast of likely 

demand for strawberries.  

3.) Experimentation, model evaluation, and comparison to come up with a high-

performing model. 
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1.6  Thesis Organization 
This thesis comprises of five chapters. This present chapter reviews the 

importance of retail stores in understanding the consumer’s buying pattern and the  

challenges of fresh produce demand planning. The business effects of over and 

under planning demand were emphasized, and optimality was promoted as ideal. It 

went on to describe the challenges of traditional timeseries forecasting and went 

to state the research scope, research question, aim and the dissertation’s 

objective. 

Chapter 2 follows immediately, and it covers the background and literature 

review. It reviews the management of the fresh produce supply chain, the enablers 

and inhibitors of FP, time series modelling, deep learning models and 

architectures, pros and cons of some selected performance metric, review of some 

related works and ended with summary of the chapter. 

The implementation of solutions and methodology, as well as the descriptions 

of the models, are covered in chapter 3. In Chapter 4, the experiment's setup and 

concept are covered, along with the main justification for the experiment's logic 

and a series of mini-scenarios designed to help the experiment go smoothly. 

Chapter 5 ends the study and analyses its limits as well as the findings. 
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Chapter 2 

2.1 Background and Literature 
This chapter examines the key themes of the thesis in depth. The themes 

under consideration are Fresh Produce (FP) supply chain management, the 

influencing factors that affect FP demand, the concept of optimal FP order 

quantity, related techniques germane to demand forecasting, specific deep 

learning architectures and models useful in timeseries forecasting, performance 

evaluation and justification of regression models used in this task. 

2.2 Management of the fresh produce (FP) supply chain 
 The resulting outcome of inept supply planning breeds financial and 

material lost. Especially in the “big market sales” environment, a market condition 

in which the supplier and retailer are far apart (Juning Su, Jiebing Wu, and 

Chenguang Liu, 2013), decision making in this environment can be challenging. 

Furthermore, FP, the commodity of interest in this thesis, more to its dynamism in 

trading, consumers are also keen on the attributes that enhance its market value; 

Freshness and availability. 

 In agreement, Willem A. R et al. (2013) noted that consumers' demand for 

year-round availability of fresh products in retail outlets is consistent. The costs of 

inventory, transportation, and preservation, among other things, are limiting 

factors in achieving this. Inability to achieve the goal serves an unfavorable 

purpose: deviation from customers' pain points, which can have severe 

consequences. Leveraging cutting edge techniques in sales and market planning is 

key. 

This thesis will add the following value to the growing research interest in 

perishable food supply chains (PFSC):  

• Contribute to the global effort to reduce food waste, which is estimated to 

be 40% to 50%. (2011) (Gustavsson et al.). 

• Contributes to the body of knowledge on the utilization of contemporary ML 

models in FP forecasting. 
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2.2.1 The enablers and inhibitors of fresh produce demand planning 

The previous section discussed the 'big market sales environment' and how it 

makes PFSC decision making difficult. Customers' needs and preferred state of FP 

quality were also highlighted. 

 The cost element is a significant factor in PFSC; failing to consider it has 

far-reaching consequences. Malleswari Karanam et al., (2022) demonstrate the 

impact of opportunity and transportation costs in determining the value 

degradation in PFSC in their research. Concerning FP and their freshness as the 

quality of attraction, suppliers work tirelessly to ensure safe and timely delivery of 

this produce, with transportation cost minimization as the objective function. 

However, the supplier's lack of proximity to the targeted retailers prevents this 

objective from being mostly realized. 

 To address this issue, researchers proposed an intelligent routing system 

that would reduce the transport-cost element that influences FP demand. Hsiao 

(2018) used a genetic algorithm (GA) to solve a vehicle routing problem (VRP) with 

a time constraint, taking into account individual characteristics of many perishable 

items, their ongoing quality decline, and optimal temperature settings during 

transportation. Hsiao's (2018) work underpins the importance of optimizing 

transportation systems in FP demand, which aligns with the logic of this thesis: the 

proximity of FP shipping stations to retailers can reduce quality degradation and 

preserve freshness, the value sought by consumers.  

 Furthermore, the energy cost is a factor in PFSC and a critical variable in 

total logistic cost, which is also an important goal (minimization) of the VRP. To 

achieve this goal, Leng L. et al. (2020) used the multi-objective evolutionary 

algorithm. In most cases, the freshness of FP determines its quality. As a result, 

constant preservation at a safe temperature is deemed necessary, and Malleswari 

Karanam et al. (2022) argued that perishable products necessitate the use of 

additional fuel to maintain their quality. Awad, M et al., (2020) and Stellingwerf, 

HM et al., (2018) argue for a cost-effective goal: determining the path that uses 

the least amount of fuel for refrigeration and traction. 

 Moreover, using fuel with a minimalist focus not only saves cost, but it also 

improves the sustainability of PFSC. Along with the cost-elements of PFSC that 

have already been identified as high in this thesis, Samir G. et al. (2018) identified 
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climate dependence as another high characteristic element. Their study confirms 

the findings of Malleswari et al., (2022) and expands (Ali et al., 2010) study on 

prices, availability, seasonality, residual shelf life of FP, prices, and price of 

substitute produce as determinants of FP demand. 

 Climate conditions have been studied for their impact on FP quality. 

According to L. Jacxsens et al. (2009), ongoing climate change and increasingly 

complex international supply chains are expected to become factors in the near 

future that could affect the performance of food safety management systems 

(FSMS). This thesis does not investigate how climate change affects food safety. Its 

indirect relationship to the freshness and quality of FP, on the other hand, is 

acknowledged to be influential in FP demand planning.  

 Temperature rise, precipitation variation, and atmospheric carbon dioxide 

were identified as a few factors relevant to food safety by Miraglia et al. (2009). 

As a result, they discovered that socioeconomic changes caused by climate change 

could have an indirect impact on the food supply chain. Technically, their position 

is consistent with the thesis's logical proposition: because the quality and, by 

extension, the purchase of FP is determined by its "freshness," climate-induced 

socioeconomic changes (such as temperature, humidity, and so on) are critical not 

only to FP demand planning, but also to timely shipment of the produce to 

retailers to ensure availability—another factor that influences consumer choice. 

Techniques have been deployed in literatures to ensure the perishability of 

FPs is preserved from distribution centers and/or retailers to end users while 

minimizing associated costs (shipment, energy, etc.) without jeopardizing the 

sustainable environment. Soysal et al. (2015) used a model to simulate a real-

world supply chain in which a distribution center delivers fresh tomatoes to stores 

in their work that resulted in the optimization of metrics such as total cost and 

carbon emission.  

Bortolini et al. (2016) investigated the impact of the distribution system on 

the perishability of FP. Their research, which focuses on Italian farmers, employed 

three distinct modes of transportation, leading to the development of a 

distribution planning system. This system accomplished two goals: regulating 

product perishability and lowering carbon dioxide emissions. Solina and Mirabelli 
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(2021) developed an optimization model in the same bid with the primary goal of 

reducing expenses and energy consumption.  

 The reviewed literature revealed that the freshness of FP is a yardstick for 

determining their quality: the most influential component that influences 

customer choice. Furthermore, the long-term viability of FSC and its indirect 

impact on demand were investigated. Indeed, some optimization models have 

been proposed, with transport, shipment, sustainability, and a variety of other 

factors modelled as constraints along the chain. While increased demand drives 

sales and possibly revenue at the distribution or retail unit, expenses associated 

with timely transport and storage at a regulated temperature, carbon emission 

reduction, and so on prior to shelving FP can reduce the possibility of maximizing 

profit via overstocking or understocking of demanded quantity. 

 To that end, a solution capable of forecasting probable demand would be 

ideal for reducing operational costs and waste caused by under and overstocking. 

However, demand uncertainty poses a problem. (Simangunsong et al., 2012) 

proposed two approaches to dealing with uncertainty. The first is to reduce 

demand uncertainty through a suitable pricing strategy, thereby mitigating 

uncertainty at its source. The second method is to deal with uncertainty by 

employing advanced forecasting techniques to mitigate the negative impact of 

demand uncertainty. The latter approach will be used in this thesis and will be 

discussed further below. 

2.3 Time Series  
The goal of time-series modelling is to forecast future output over a given 

time period. This is critical to the dissertation's goal, so before moving on to the 

predictive and or forecasting techniques used in this work, the two most well-

known timeseries modelling methods and their inherent characteristics are briefly 

discussed. 
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2.3.1 Univariate Time Series 

 A univariate time series is a scalar (or one feature) of observations that are 

captured in the same time increments sequentially. (C.J. Cuaresma et al.,2004) 

and (J. Contreras et al.,2003) provided examples of using previous agricultural 

commodity prices to predict future prices. A key assumption in the univariate 

method, as proposed in the Naive Forecasting model, is dependency. That is, the 

next period is assumed to do the same as the previous period (J. Contreras et al., 

2003).  

 One of the characteristics of univariate timeseries is autocorrelation. 

Simply put, it is the similarity of observations as a function of their time lag. Time 

lags could be plotted in minutes, hours, days, weeks, and so on. The Pearson 

correlation of a signal with a delayed copy of itself as a function of delay would be 

revealed by the lag plots. This allows for a thorough examination of whether a 

univariate timeseries should be modelled daily, hourly, or weekly. In practice, the 

logic is to find a duration with a moderate correlation: one that is neither too 

correlated nor too uncorrelated in order to improve modelling performance.  

 Trend is another characteristics. (A.T. Jebb and L. Tay., 2016; E.S Gardener 

and Ed. McKenzie., 1985) defined it as a systematic linear or nonlinear component 

of timeseries that changes over time and does not repeat.  

Seasonality is also assigned to univariate timeseries data. It detects 

variations that occur at specific regular intervals of less than a year, such as 

weekly, monthly, or quarterly. Seasonality affects forecasting and is aided by 

factors such as weather. It is made up of periodic, repetitive, and generally 

regular and predictable patterns in a timeseries' levels (A. M. Davey and B. E. 

Flores, 1993). 

Finally, the most important feature of  univariate timeseries is stationarity. 

Stationarity is achieved when a timeseries has a constant mean and variance that 

is independent of time. A stationary time series is defined (D. Kwiatkowski et al., 

1992) as one whose properties do not depend on the time at which the series is 

observed. A timeseries with a trend or seasonality, is considered non-stationary. 

Non-stationary models for short-term forecasting horizons include generalised 

autoregressive conditional heteroskedasticity, or GARCH (ES. Gardner, 1985), and 

auto-regressive integrated moving average, or ARIMA (ES. Gardner, 2006). 
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2.3.2 Multivariate Time Series 

 In contrast to the univariate timeseries, the multivariate timeseries has 

more than one time-dependent variable (i.e., two or more features). N. H. Chan 

(2001) noted in his work that each of these variables is distinct in that it is 

dependent on its previous values and is a function of other variables. 

 More input variables are assumed informally to improve the model's 

performance. However, J. H. Stock (2001) recommended an empirical approach 

supported by domain knowledge to determine whether multivariate series are 

appropriate for the intended task. He went on to argue that extensive 

experimentation is required to determine the best approach between univariate 

and multivariate series.  

Based on this logic, while domain knowledge was used to determine 

relevant features in this thesis, a three-stage statistical approach was used to 

select the most important features required for modelling. This method will be 

covered in the following chapter under the proposed solution. 

2.4 Forecasting and Predictive Techniques 
Although the same techniques are used and the terms are used 

interchangeably, it is important to distinguish between forecasting and prediction. 

Forecasting is a subset of prediction, according to Teja K. (2019), and it applies to 

out-of-sample observations, whereas prediction applies to in-sample observations.  

Teja continued by stating that; "for each observation in the sample used to 

estimate the regression, predicted values are calculated. Forecasts, on the other 

hand, are made for some dates that are beyond the data used to estimate the 

regression ". To summarise, forecasting makes use of past and current trends to 

predict future outcomes. It implies the passage of time and the future, whereas 

prediction does not. Prediction and forecasting tasks are accomplished in this 

dissertation. 

Traditional forecasting methods such as ARIMA were used in determining 

future estimation prior to the era of big data and sufficient computational 

resources. However, the bottleneck is their assumption that all data is linear. 

Machine learning (ML) methods were gradually adopted, and their ability to handle 

non-linearities in data (H. Demuth, 2009) make them better. 
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Furthermore, the concept of demand and its influencing factors introduce 

volatility into its modelling, reducing the effectiveness of good models and even 

those thought to be better. This study, for example, considers factors such as 

price, number of stores, and so on that can affect market availability of at least 

one unit of strawberries and attempts to find a relationship between these factors 

and demand for at least one unit sale of strawberries based on the number of 

stores advertising. Thus, ML models, like time series, can be regarded as 

multivariate models (Okwuchi et al., 2020) and are implemented as such in this 

dissertation. 

ML models are classified as either supervised or unsupervised. Unlike 

unsupervised learning, which is commonly used for clustering and is trained 

without labels, supervised learning is accomplished through the training of 

influential factors known as inputs or independent variables and their 

corresponding labels or target variables. Supervised learning is used to solve 

regression and classification problems. This work is a supervised learning and 

regression task that employs Deep Learning (DL), a family of ML techniques . The 

section that follows goes over the DL methods and some of the architectures used 

in this dissertation. 

2.5 Deep Learning  
 Deep learning, also referred to as deep structured learning or differential 

programming, is a subset of machine learning (ML) that is based on artificial neural 

networks (ANN) and other architectures. The ability of DL to perform 

representational learning (RL) is an instinctive feature. In their published work 

"Deep Learning," I. Goodfellow et al. (2016) defined RL as a set of methods that, in 

addition to accepting raw data as input, automatically discover representations in 

the data required for detection or classification. According to Y. Bengio et al. 

(2013), DL representation methods have multiple levels of representation that are 

achieved by combining simple non-linear modules that each transform the 

representation at one level into a representation at a higher, slightly more 

abstract level. 
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The effectiveness of DL techniques based on ANN is significant. Prior to this 

study, they were widely used in image detection, computer vision, speech 

recognition, natural language processing, and other applications before being 

applied to time-series tasks, as is done in this study too.  

Although they are mostly efficient in some use cases, one of their drawbacks 

is the high cost of computational resources. The ANN will be discussed next, 

followed by some of its selected subsets such as the recurrent neural network 

(RNN), under which the long-short-term memory (LSTM) will be explored, the 

convolutional neural network (CNN), and the attention mechanism, all of which are 

used in this study. 

2.6 Artificial Neural Networks (ANNs) 
 The numerical capability of ANNs in approximating non-linear continuous 

relationships is well known (Nelson, 2015). This capability makes it possible to 

model ever-increasing amounts of data, necessitating the use of better enhanced 

forecasting models rather than the well-known ARIMA. Farouk (2010) reported that 

an early approach that uses a feed-forward neural network to model non-linear 

dependencies based on residues of sequential data, with the assumption that time-

series data has both linear and non-linear dependencies was introduced. 

 ANNs are supervised ML that perform tasks without requiring specific task-

related rules (Y. Chen et al., 2019). They are inspired by biological neural 

networks found in animal brains. Neurons in ANN are a network of interconnected 

nodes that receive a signal, process it, and transmit it to another neuron. The 

input, a real number, is transformed nonlinearly to produce an output.  

As learning progresses, the weights of the network are used to connect 

neurons and are updated accordingly. An important component of the ANN is the 

layer: a stack of neurons at the same level. Various transformations can be 

performed at different layers, which means that the output at each layer may 

differ.  
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The ANN learns by minimising the cost function, which is the difference 

between predicted and actual value. Errors are discovered during learning, and the 

backpropagation technique is used to adjust the connection weights to compensate 

for each error. The error is then distributed to the various connections. 

Backpropagation precisely computes the derivative of the cost function associated 

with a given state with respect to the weights (which are updated using stochastic 

gradient descent). In this thesis, how well the implemented models minimizes 

error was used factor in the decision process. The ANN architecture is depicted in 

Figure 2.1. 

 

Figure 2.1: A simple ANN architecture 1 

Figure 2.1: A simple ANN architecture (image by: Diego Manfre) 

2.6.1 Recurrent Neural Networks (RNNs) 

Recurrent neural networks are an ANN class in which node connections form 

a directed graph along a temporal sequence. Because of this graph, the RNN can 

exhibit temporal dynamic behaviour (P. Murugan, 2018). Murugan went on to 

explain that RNNs are derived from feedforward neural networks and that they can 

process variable length sequences of inputs using internal state memory. 

Z. C. Lipton et al. (2015) described the RNNs' mathematical process, and 

figure 2.2 depicts the computations required for the forward steps. At time t, 

nodes with recurrent edges receive input from the current data point xt as well as 

hidden node values h(t-1) from the previous state of the network. Given the hidden 
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node values h(t) at time t, the output 𝑦̂(𝑡)  is calculated at each time t. The input 

x(t-1) at time t-1 can have an effect on the output y(t) at time t. 

 

Figure 2.2: An unrolled RNN 1 

Figure 2.2: An unrolled RNN (image credit: C. Olah’s post) 

The computations of the hidden node h(t) and the output y(t) are shown in 

Equations 2.1 and 2.2, followed by a description of each parameter. 

ℎ(𝑡) = 𝜎(𝑊ℎ𝑥X(𝑡) + 𝑊ℎℎℎ(𝑡−1) + 𝑏ℎ)      (2.1)  

𝑦̂(𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦ℎℎ(𝑡) + 𝑏𝑦)      (2.2) 

The logistic function, 𝜎, also known as the activation function, is a non-

linear transformation that accepts any real number and returns a value between 0 

and 1. Whx is the conventional weights matrix between the input and the hidden 

layer, while Whh is the recurrent weights matrix between the hidden layer and 

itself at adjacent time steps. The bias parameters bh and by enable each node to 

learn an offset (Z.C. Lipton et al., 2015). 

The predicted next value of the sequence is represented by the output 𝑦̂(𝑡). 

An RNN can also be thought of as a deep network with a layer for each time step 

and shared weights between them. RNNs are considered similar to traditional time-

series models because they can model both temporal and time-based relationships 

in data. However, the exploding and vanishing gradients pose a challenge to RNN's 

ability to model sequences. This limitation gave rise to the long-short-term 

memory network (LSTM). The LSTM is covered next. 
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2.6.1.1 Long Short Term Memory Network (LSTM) 

Long Short Term Memory networks were developed to mitigate the effect of 

vanishing and exploding gradients in RNNs, as discussed above (S. Hochreiter et 

al.,). To overcome these constraints, the LSTM employs a memory cell comprised 

of nodes with self-connected recurrent edges of fixed weight, ensuring that the 

gradient can pass through it many time steps without vanishing or exploding. F. A. 

Gres et al. (2002) described the LSTM's input gate, memory, and output gates as 

outlined below. 

• Input Gate: To modify the memory, it selects the most important values 

from the input. With the help of the sigmoid function, the selected values 

are transformed to be between 0 and 1. The tanh function, on the other 

hand, assigns weightage to the values that it receives and thus determines 

their level of importance, which ranges from -1 to 1. The input gate (it) and 

the candidate for cell state (𝐶𝑡 ′). are represented by Equations 2.3 and 2.4, 

respectively. 

𝑖𝑡 = 𝜎(𝑊𝑖 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖)      2.3  

𝐶𝑡 ′ = 𝑡𝑎𝑛ℎ(𝑊𝑐 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑐)      2.4 

𝐶𝑡 ′ is the candidate cell; b depicts bias; W represents weights and ℎ𝑡−1 is the 

output of the previous LSTM block at time stamp t -1. 

• Forget Gate: It is significant in identifying irrelevant contents present in the 

internal state, as introduced by Gers et al., (2002). It takes values from the 

previous hidden state in addition to the current input. It is represented by 

equation 2.5 below. 

  𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑓)      2.5 

• Output Gate: The memory cell generates the hidden node value (ht) (see 

equations 2.6, 2.7 and 2.8), which is estimated by multiplying the value of 

the internal state by the value of the output gate Ot. Internal states are 

frequently run through a tanh activation function (Okwuchi et., 2020) 

because it gives each cell's output the same dynamic range as an ordinary 

tanh hidden unit. However, rectified linear units (RELU) were used in this 
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study due to their ease of training and wider dynamic range (C. Olah., 

2015). The LSTM with the gates is shown in Figure 2.3. 

 

Figure 2.3:  LSTM cell showing the three gates (credit: C. Olah.,2015) 

  𝑂𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜)       2.6  

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡 ′       2.7  

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)        2.8 

So far, LSTM has been mentioned as a method for mitigating RNN's exploding 

and vanishing gradients. The vanishing gradient can still occur even with LSTM. As 

a result, researchers proposed the attention-based mechanism. This mechanism 

was used in this study in a bid to optimize the performance of the LSTM model. 

Following that is a discussion of the attention mechanism. 

2.6.2 Attention Mechanism 

 The goal of attention mechanisms is to assist the model in focusing on the 

most important parts of the input sequence for each output. The attention 

function, according to A. Vaswani et al. (2017), is a mapping of a query and a set 

of key-value pairs to an output, where the query, keys, values, and output are all 

vectors. 

 Attention aids in the resolution of the vanishing gradient problem by 

providing a direct path to the inputs (Anusha Lihala, 2019). This thesis made use of 

the self-attention mechanism out of many other variants of attention mechanism. 

With self-attention, each hidden state attends to the RNN's previous hidden states. 

Other attention mechanisms include additive attention, multi-head attention, and 

so on. Finally, the convolutional neural network (CNN) will be discussed as the 

final ANN architecture implemented in this thesis. 
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2.6.3 Convolutional Neural Networks (CNN) 

 CNNs are commonly used in image classification (J. Wang and Y. Hu., 2020), 

natural language processing (R. Collobert et al., 2008), recommender systems (A. 

Vandenoord et al., 2013), and, more recently, time series modelling (A. 

Tsantekidis et al., 2017). How does a well-known image detection network support 

time series modelling? (ref number: 52) reported that patterns in a sequence of 

time series data would be recognized by CNN regardless of where they appeared in 

the sequence.  

This is because CNNs can use shared weight and translation invariance. If 

every pixel in an image is moved in the same direction the same number of times, 

the image retains its original property and is recognized as the same thing (ref 

number: 52). This explains the usage of CNN in time series data. 

CNN's max pooling layers can reduce the risk of overfitting, even though the 

network is not completely immune to overfitting (Vincent Tatan, 2109). By 

reducing the number of neurons, this max pooling layer enables more automatic 

extraction of important features. The logic in this dissertation was guided by this 

feature extraction ability to place CNN layers over the LSTM in order to compare 

the effect of the spatial-temporal relationship to the temporal ability of the LSTM 

alone. 

The Rectified Activation Unit (ReLU) in CNN mimics neuron activations to 

introduce nonlinearity for values x>0 and returns 0 if the condition is not met. This 

method has proven to be effective for solving decreasing gradients (Vincent Tatan, 

2019). Figure 2.4 shows the CNN basic architecture. 

 

Figure 2.4: CNN architecture (Vincent Tantan, 2019) 
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Finally, the CNN has hidden layers composed of convolutional layers that 

convolve with a dot product. Kernel convolution is a critical component of CNN. A 

sliding window was used to create the kernel that passed over the 1D input 

sequences in this study. CNN receives a tensor as input. As a result, the input 

sequence in this work has been modified to generate a tensor. 

2.7 Performance Metrics 
 The evaluation of machine learning models is a critical component of the 

process. Evaluating the performance of each model provides a solid foundation for 

comparison in a supervised learning regression problem. Most metrics used for 

regression tasks in the existing literature (N. K et al., 2010; S. Jharkharia & M. 

Shukla et al., 2013; R. J. Hyndman and A. B. Koehler, 2006) are the Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), Mean 

Absolute Percentage Error (MAPE), and the R2-score: a measure of the degree of 

correlation between the predicted and actual values (D. L. Alexander et al., 2015). 

The three metrics used in this thesis are outlined below: 

• Mean Squared Error (MSE): The MSE is commonly used in regression tasks. It 

is the mean of the squared difference between the target and predicted 

values from the regression model. The concept of squared differences 

implies a high penalty for even minor errors, and an even higher penalty for 

major ones. It is significant because it has a distinguishing feature that 

allows for optimization. Unfortunately, MSE is susceptible to outliers (S. 

Jharkharia and M. Shukla, 2013; R. J. Hyndman & A. B. Koehler, 2006). In 

this dissertation, the MSE was used as the loss function to be minimised. 

Equation 2.8(a) is used to estimate the MSE. 

𝑀S𝐸 = 1/n ∑n
i=1 (𝑦𝑖 − 𝑦̂𝑖 )2      2.8(a) 

 Where 𝑦𝑖 is the 𝑖𝑡ℎ true value, 𝑦̂𝑖 is the 𝑖𝑡ℎ prediction and n is the sample size. 

• Mean Absolute Error (MAE): The MAE, which is also commonly used in 

regression, estimates the absolute value of the difference between actual 

and predicted values, adds these absolute errors for all examples, and 

divides the total by the sample size. According to (C.J. Willmont & K. 

Matsuura), MAE is preferred over MSE and RMSE due to its robustness to 

outliers, as well as being unambiguous and natural. Its disadvantage is that 
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it is not differentiable. The goal of this dissertation is to track the model 

with the lowest MAE on the test dataset over a specified range of epochs. 

Equation 2.8(b) is used to estimate the MAE. 

MAE = 1/n∑n
i =1|𝑦𝑖 − 𝑦̂𝑖 |     2.8(b)  

Where 𝑦𝑖 is the 𝑖𝑡ℎ true value, 𝑦̂𝑖 is the 𝑖𝑡ℎ prediction and n is the sample size. 

• Coefficient of Determination (R2-score): Based on the proportion of total 

variation explained by the model, the R2-score provides a measure of how 

well observed outcomes are replicated by the model (R. G. D. Steel & J. H. 

Torrie, 1960; N. R. Draper, and H. Smith, 1998). The R2-score is used to 

assess the goodness of fit of any linear least square regression model with 

an intercept. It has a value between 0 and 1. 

In extreme cases, the score can be negative, indicating that the mean 

of the dataset fits the dependent variables better than the values provided 

by the model and that there is a complete lack of fit, according to T. O. 

Kvalseth (1985). This can also indicate a mismatch between a specific model 

and the regression problem under consideration. If the residual sum of 

squares is low, the R2-score is close to one; if the R2-score is close to zero, 

the residual sum is high. 

One of the primary goals of this research is to experiment, compare 

and identify the best performing model. As a result, the R2-score is chosen 

as a metric to accomplish this because it provides a relative idea of model 

performance on a scale of 0 to 1, as opposed to the MSE and MAE, which 

provide absolute values and may not reveal model performance.  

The R2-score has a few limitations, including not accounting for 

collinearity and not knowing if enough data points were used. To address 

the issue of multi-collinearity, the data preprocessing portion of this work 

used the variance inflation factor to select input features with low or no 

correlation among themselves. Equations 2.8c, 2.8.d and 2.8e defines the 

R2-score used in this dissertation. 

 ress = ∑n
i=1 (𝑦𝑖 − 𝑦̂𝑖)2      2.8(c) 

 tsos = ∑n
i=1 (𝑦𝑖 − 𝑦̅)2      2.8(d) 

  R2-score = 1 – ress/tsos     2.8(e) 
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“ress” is the residual sum of squares; “tsos” is the total sum of squares; 𝑦𝑖 is 

the ith is true value; 𝑦̂𝑖 is the ith prediction and 𝑦̅  is the mean of the actual 

values. 

2.8 Related Work 
 A cursory examination of related works reveals significant progress in 

forecasting many agricultural products using traditional time-series models and 

advanced machine learning models. The ARIMA model was used to predict wheat 

yield by M. Ray et al. (2016) and L. Michel et al. (2013).Statistical models were 

used to forecast rice production by (A. Shabru, R. Samsudin, and I. Zuhaimy, 

2009).  

K. Yamamoto et al., (2018) published articles predicting fresh produce in 

relation to this thesis and the commodity under consideration. Okwuchi et al. 

(2020) thoroughly investigated the use of traditional and advanced deep learning 

models in forecasting strawberry yield in relation to weather and oil prices. While 

their research focused on yield forecasts, a pre-marketing stage in agriculture, this 

dissertation work concentrated on predicting and forecasting likely demand, a 

post-harvest operation that is a key determinant in marketing plans and a major 

driver of business revenue. 

Furthermore, this thesis makes use of a dataset from multiple retail stores 

that advertise at least one unit of strawberry. This implies a representation of the 

customers' purchasing habits, which in turn dictates changes in annual yield. Thus, 

through structured experimentation, this work bridges the gap in post-harvest 

marketing by forecasting probable demand and identifying a better model, after 

optimization between the two in the outlined research question. 

2.9 Summary 
 This chapter began by highlighting the research themes, then provided an 

extensive overview of the FP market, and even discussed the cost-elements of FP 

and how important they are in decision making. It went on to explain some of the 

factors that impede accurate demand planning, as well as what researchers have 

done to address this through proposals of various cost optimization models. 
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The distinction between univariate and multivariate timeseries data was 

explained, as well as the distinction between prediction and forecasting. A 

thorough report on ANN, RNN, and some specific deep learning models, as well as 

the optimization techniques used in these models, was justifiably highlighted. The 

limitations and strengths of the majority of techniques, as well as the performance 

metrics used for regression tasks, were discussed, followed by a brief review of 

related works. 

 Finally, the research hypothesis was stated, and the following is the 

research’s contribution: this work bridges the gap in post-harvest marketing by 

forecasting probable demand and identifying a better model between two models: 

the LSTM, which models data's temporal relationship, and the CNN-LSTM, which 

models data's spatial-temporal relationship. 
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Chapter 3 

3.1 Methodology and Implemented Solution 
Choosing between the two proposed models for predicting and forecasting 

the commodity of interest in this study requires careful consideration of the most 

likely contributing factors. The factors considered in this chapter (domain 

knowledge, dataset, models, model optimization, and model evaluation) have a 

legitimate influence on the robustness of the intended solution. Each factor's 

detailed logic is explained next. 

3.2 Domain Knowledge 
 The use of machine learning techniques is widespread. As a result, prior to 

selecting an appropriate feature for modelling, it is critical to have a good 

understanding of the specifics of the field in which an ML solution is intended to be 

implemented. The scope of this work does not include a detailed examination of 

demand and supply. However, a cursory review of marketing literature aided in 

narrowing the dataset used in this study. 

 Raplang Lapasam et al. (2021) found price to be the most important 

independent variable in determining the volume of market arrival when looking at 

both supply and demand sides of the equation in their study on factors affecting 

vegetable marketing. This demonstrates that price has a significant impact on 

demand. Other influencing factors include population growth, production level, 

per capita income, and so on. The section that follows goes over the data 

collection process, feature selection and reduction, key assumptions made, and 

some useful visual representation. 

3.3 The Dataset 
High-performance machine learning applications rely on data. The data 

(12years durations) used in this work was sourced from market terminal reports 

from the United States Department of Agriculture (USDA) (link here), and it has 

fifteen features, each of which is explained in this document. Strawberry is the 

commodity of interest, and its data is updated every Friday across the country. As 

a result, the data was aggregated weekly prior to modelling. An attempt to 

aggregate it daily resulted in a negative R2-score, which is contrary to the goal of 

this dissertation. 

 

https://www.marketnews.usda.gov/mnp/fv-report-retail?repType=&run=&portal=fv&locChoose=&commodityClass=&startIndex=1&type=retail&class=FRUITS&commodity=STRAWBERRIES&region=ALL&organic=ALL&repDate=08%2F20%2F2022&endDate=08%2F26%2F2022&compareLy=Yes
https://www.marketnews.usda.gov/mnp/fv-help-17
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The dataset did not include direct demand, or the total quantity of 

commodity sales. The number of stores advertising a unit of strawberry, on the 

other hand, was made available, and thus the target feature (likely demand) was 

engineered by multiplying the unit (1 pound) by the number of stores advertising. 

The number of stores advertising a unit of strawberry quantifies or measures the 

consumer's purchasing pattern in that locality.  

As a result, the bottom line is that the greater the customer demand, the 

greater the number of stores or retail outlets advertising the sale or availability of 

at least one unit of strawberries. Figures 3.1 (12 year period) and 3.2 ( a year 

period) depict this logic graphically, and the seasonality and uncertainty in 

demand trends were observed. 

 

Figure 3.1: Assumed demand trend over a 12-year period. 
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Figure 3.2: Assumed demand trend over a year period 

Seasonality and an irregular pattern are visible in the graphs. This supports 

the initial logic proposed. The following section describes the three-stage 

approach used in feature selection, which was hinted at in the previous chapter 

under section 2.6. 

3.3.1 Feature selection and engineering 

Relevant features can be a blessing in ML modelling, but irrelevant ones can 

be a curse. After the filling of missing values and preparing the data types in the 

desired format, the correlation heat map was created in the first stage using the 

Pearson correlation method to identify features that have a significant correlation 

to the target variable (current demand). Following that, the three features with 

the weakest correlation (<0.5) were removed. There is a problem with the 

retained features: multi-collinearity. This may have an impact on the model's 

performance.  

As a result, the second stage of feature reduction got underway. The use of 

the Variance Inflation Factor (VIF), a statistical process aimed at determining the 

combination of features with the least collinearity, is the highlight of this stage. 

The VIF threshold is five. As a result, any retained feature with a VIF greater than 

5 was removed. Price, as seen in figure 3.3, was discovered in this work to be a 

strong factor that determines demand in addition to previous demand. This is 

consistent with the findings of Raplang Lapasam et al. (2021).  
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Figure 3.3: The VIF of the retained variables 

The final stage is the Xgboost feature-importance module implementation. 

The F-score of each feature is calculated and ranked using this technique. As a 

result of this, the "number of stores" was identified as a significant feature, and it 

was added as an input feature alongside the VIF-identified two. Even though it is 

the target variable, the estimated current demand also serves as an input because 

it can provide useful insight into the next week's forecast.  

To create the engineered input data shape, four input features were 

combined with one target feature (760, 4). The sample size was reduced from 

12000 to 760 after weekly aggregation. To fit the model requirement, the 

engineered data was further processed to fit into a three-dimensional shape of 

(753, 7, 4) which represents (sample, lookback, number of features). Features are 

neither normalized nor standardized because the implemented models include a 

"Batch Normalization Layer" that scales batch input. The following section goes 

over modelling techniques and architectures. 

3.4 Models 
Again, this work is a regression-based supervised learning, and the model 

selection is guided accordingly. Furthermore, the basic exploratory data analysis 

reveals non-linear patterns in the dataset, so deep learning (DL) models are used 

because of their ability to learn complex patterns in data as well as their ability to 

improve continuously as data size increases (I. Goodfellow et al., 2016). In this 

study, the DL model in section (2.6.1.1) and its hybrid with the model in section 

(2.6.3) are proposed for use. In an effort to optimize, a specific layer of the model 

in section (2.6.3) was added.  
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Reshaping the data into a three-dimensional form is an important aspect of 

this implementation. The data points of 7 weeks were used as the window size (the 

number of weeks or data points the model has to draw inference from the past to 

make future predictions) out of the 760 samples (samples reduced to 753 after 

deducting the window size) with four input features aggregated weekly.  

Furthermore, the resulting data sample was divided into three parts: 

training, testing, and a random validation split that comprised 20% of the training 

set. For all models implemented, the procedure was the same. The remainder of 

this chapter will go over each implemented model's configuration, model 

optimization, tuning, and evaluation metrics. 

3.4.1 Model 1: Long Short Term Memory (LSTM) 

 The LSTM model's architecture begins with an input layer that feeds data 

directly into the batch normalization layer (as explained in section 3.3.1), followed 

by two LSTM layers with 300 and 128 units, respectively, followed by another 

batch normalization layer, followed by a 32-unit dense layer, a 16-unit dense 

layer, and a 1 unit dense layer. The ReLU non-linear activation function is used 

throughout, the loss function is mean squared error (MSE), and Adam is the 

optimizer. The MAE was used as the metric, and its minimum value was tracked 

throughout. Figures 3.4 and 3.5 show the summary and sketched architecture of 

the implemented model respectfully. 

Figure 3.4: Summary of the implemented LSTM model 
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2 LSTM Layers with Batch Normalization 

Figure 3.5: Implemented LSTM model architecture 

3.4.2 Model 2: Convolutional Neural Network with LSTM (CNN-LSTM) 

 The batch normalization layer is the first layer in this hybrid model's 

architecture, followed by a 1D convolution layer with a 64 filter, a kernel size of 7, 

and the same padding with ReLU activation function. This was followed by a size 2 

1D max pooling layer. The following layer is a batch normalization layer, followed 

by a repeated 1D convolution layer with a 32 filter size, a kernel size of 3, a ReLU 

activation function, and the same padding.  

Following that is a Maxpooling layer of size 2, followed by another layer of 

batch normalization (BN), and finally a 1D Convolutional layer with 16 filters, a 

kernel size of 7, ReLU activation, and padding all set to the same. The final 1D 

convolution layer is immediately followed by a 0.2 drop out layer before an LSTM 

layer of 300 units, which is then followed by another 0.2 drop out layer and 128 

units of LSTM. The final three layers are 32 units, 16 units, and 1 unit dense, 

respectively. Figure 3.6 shows the model architecture. 

   LSTM  

Input data BN Conv1D       Max Layer        ..x3.. dropout(0.2) 

 

 

 1 16  32 LSTM dropout  

                                                          

     Dense Layers 

Figure 3.6: implemented CNN-LSTM model architecture 
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Figure 3.7 depicts the summary of the CNN-LSTM model design.  

 

 

Figure 3.7: CNN-LSTM model summary 

3.4.3 Model Optimization 

 Optimization is critical to ensuring that the two base models do not 

underperform. It is even more important to achieve a satisfactory level of 

performance. The two optimization techniques used in this thesis are described 

below. 

3.4.3.1 Bayesian Optimization  

 Machine learning algorithms are rarely parameter-free. Even more 

concerning are neural network models, which require a unique set of parameters 

and hyper-parameters to optimise the underlying model's capacity. The question 

then becomes how to get a model to perform at an expert level despite the fact 

that it has an infinite number of possible hyper-parameter combinations. 
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Alternatively, the Bayesian technique was used in this thesis to find the best 

combination of hyperparameters for the single-architecture LSTM model. The 

process is explained hereinafter. 

 The LSTM model used in this thesis is composed of stacked layers with 

various model parameters. Parameters are the model's coefficients that are chosen 

by the model, whereas hyperparameters are set manually. The layers are viewed 

as an objective function with a set of parameters in this technique. The objective 

function is compared to a "black box function" because its inner structure is 

unknown, but only the parameters it will use are. This function generates metrics 

like loss, MSE, and MAE to provide the foundation for performance evaluation. 

 Thus, the Bayesian process aids in determining the best set of parameters to 

use when evaluating the objective function with the Gaussian process (GP) or 

surrogate model. The importance of GP is that it aids in comprehending the 

structure of the objective function. The Bayesian algorithm optimises the 

objective function because the GP has already learned the structure of the 

objective function by selecting the appropriate set of parameters from the 

parameter space. The previously learned parameter space will be utilized to 

suggest the next parameter. The process will continue to search the set of 

parameters until a stopping condition for convergence is met (Yugesh Verma, 

2021).  

The largest iteration that ran in this thesis was 100. At the outset, the range 

of values for hyperparameters such as batch size, dropout rate, learning rate, and 

so on were defined, as were the optimizers, decay rate, and momentum. The 

epoch is the only manually adjustable hyper-parameter with a value change range 

of 10 to 300. A data pipeline was built (which will be discussed in the following 

chapter). The suggested combinations of other hyper-parameters (batch size, drop 

out, learning rate), optimizer, layers, and metrics from the outcome of the 

Bayesian process were automatically logged after each iteration for the specified 

epoch size to aid performance comparison with the base LSTM model. 
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3.4.3.2 Optimization with Self-Attention layer 

 To enhance the performance of each of the underlying models, a self-

attention layer was added. The following elements were used to optimize the self-

attention LSTM model: 

1) Input Layer: input the time-series data of the model. 

2) Batch normalization layer: scales each batch size of the input data. 

3) LSTM layers: two layers stacked with 300 and 128 units as shown in figure 

3.8. 

4) Attention layer: this layer was added after the second LSTM layer (see figure 

3.8) to generate a weight vector (Asmaa Fahim et al., 2021). It weights the 

hidden state of all timestep(s), and focuses attention on the more important 

ones in the entire hidden state information sequence. The activation 

function used in this layer is the sigmoid function. 

5) Flatten Layer: to reshape the multidimensional input into an output of N.1 

matrix. It still retains the underlying elements contained in the original 

tensor. 

6) Dense layers: five layers of units 64, 32, 32, 16 and 1 that performs matrix-

vector multiplication. 

7) Dropout layer: set at 0.2 after the first dense layer to reduce overfitting. 

Figure 3.8 shows the summary of the LSTM optimized with self-attention layer. 

 

Figure 3.8: Self-Attention LSTM model summary 
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Note: The hybrid CNN-LSTM model underwent the same optimization process. In 

other words, the fully - connected convolution neural network was just above the 

optimized LSTM with self-attention. 

3.4.4 Evaluation Metrics 

 There have been references to the boundaries of the performance 

measurements discussed in section 2.7. The R2-score was for comparison between 

the baseline models and their optimized variants because on an average scale, it 

gives the general performance of the model. The MAE was used to compare the 

error levels of the models. 

3.4.5 Hyperparameter Tuning 

 To obtain a model with good performance, model tuning becomes 

increasingly crucial. Particularly with deep learning, tuning hyperparameters to 

obtain the optimum set can be very challenging. Although a manual technique was 

used for the majority of the testing, an automated optimization technique detailed 

in section 3.4.3.1 was also used. Extensive runs were performed to achieve optimal 

hyperparameter combinations with the help of the data pipeline established 

utilizing the MLFlow cloud resource. In the chapter that follows, which deals with 

the setup of the experiment, this process will be explained in greater detail. 

 The learning rate is regarded as one of the most crucial hyperparameters (Y. 

Wu et al., 2019) because it might cause the algorithm to become stuck in a local 

minimum if it is too high or too low, delaying convergence (Y. Wu et al., 2019). 

Hyperparameter tuning aids in both model improvement and finding the 

hyperparameter set that best generalizes the model and prevents either 

overfitting or underfitting. To achieve a balance between overfitting and 

underfitting is the goal of each supervised learning project. A model check point 

that monitors and saves the model with the lowest validation MAE and best weight 

is employed in this implementation. Then, a prediction is made using the saved 

model. Figure 3.9 depicts the function of the model checkpoint and how it 

attempts to achieve a good fit. 
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Figure 3.9: Data showing how the model checkpoint works 

Figure 3.9 depicts a data set enabled by the MLFlow cloud resource, which was 

used to log all parameters, hyper-parameters, and model artefacts at each run. It 

demonstrates that the model monitored and used the minimum MAE(4707.2) at 86 

epochs to make predictions and compute the R2-score for a hundred epochs.   

3.5 Technical implementation 
 This solution was implemented using Python 3.9, TensorFlow, Keras, MLFlow 

etc. and the IDE is Jupyter. The other requirement is attached to Appendix A as an 

image. 

3.6 Summary    
 This chapter begins by describing the domain knowledge, the dataset, its 

source, and the documentation that explains the variables that were used to make 

an assumption about what the likely demand, or target variable, is. A quick 

exploratory data analysis revealed the seasonality in the understudy data. The 

feature selection technique consisted of three stages: Pearson correlation 

coefficient, statistical analysis using the variance inflation factor (VIF), and the 

Xgboost feature importance package. This VIF shows how previous customer 

purchasing patterns and price influence future purchases. 

 The structure of the implemented models was then described in detail. It 

was reported that two base line models (LSTM and CNN-LSTM) were implemented 

and optimized with the self-attention layer. Furthermore, the Bayesian 

optimization for hyperparameter combination was explored for the LSTM model 

only. 

 The importance of evaluating model performance was emphasized, and the 

limitations of well-known regression metrics were cited as the reason for using. 

Model performance can be harmed by both overfitting and underfitting. To address 

this issue, the model checkpoint was used. Finally, the technical implementation 

and the resources uses were outlined. 
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Chapter 4 

4.1 Experiments, Results and Discussion 
 The methodology and technical solution to the defined problem were 

detailed in the previous chapter. The dataset, its processing, feature engineering, 

and evaluation metrics were all covered. The hyper-parameters and accuracy 

scores are the most important aspects of this experimental analysis. They serve as 

the foundation for the analysis and comparison. The following section describes 

these experiments and the reasoning behind them. 

4.2 Experiment Set-Up 
 TensorFlow 2.9.1 and Keras 2.9.0 were used in Python 3.9.7 with the 

Jupyter notebook environment on a Windows intel core-i7 machine powered by an 

Nvidia RTX studio GPU for these experiments. The most important library for 

managing and logging all of the resulting experimental parameters is the Machine 

Learning Flow (MLFlow). 

 The steps for integrating MLFlow (version 1.2.8.0.) with Python are outlined 

below. 

I. The mlflow library was imported from Keras and the experiment was 

initiated with the “mlflow.set_experiment (name of the experiment)” 

command. 

II. The tracking uri was then set by running “mlflow” and then “mlflow ui” 

from the anaconda command prompt. Figure 4.1 depicts this more clearly. 

These experiments’ tracking uri is http://127.0.0.1:5000. 

III. The experiment was started with the "with mlflow.start run" command, 

which takes the experiment number as a parameter. 

IV. Following that, "mlflow.log metric" was set. This command automatically 

logs all hyper-parameter combinations specified in the model, as well as 

the training and validation loss and model artefacts. However, the desired 

metrics for this thesis, MAE and R2-score on the test dataset, were 

created and added to the logged parameters for each experiment.  

Appendix figure A.1 and A.2 contains the Python code for the experiment setup. 

 

http://127.0.0.1:5000/
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Figure 4.1: The generated mlfow uri through the anaconda prompt 

4.2.1 Experiment idea 

 The experimental setup and its significance in data generation have been 

discussed. However, the analysis in this thesis is based on experimental ideas and 

techniques, the results of which will provide insight into which of the two 

proposed baseline models performs better. The central argument is outlined 

below, followed by the scenarios that supplement the analysis. 

4.2.2 The Central Arguments: 

For example, Rui Chen et al. (2019) proposed a CNN-LSTM hybrid model to 

learn the spatio-temporal correlation of atmospheric and oceanic variables for 

forecasting typhoon formation and intensity. They claimed that their proposed 

model outperformed the other existing models in terms of performance. 

To further deconstruct this logic, the LSTM predicts using temporal 

relationships, whereas the CNN predicts using spatial data relationships. 

Furthermore, the CNN-LSTM employs spatio-temporal relationships, which can 

make it more effective than the previous two, and this is the basis of the argument 

in this dissertation.  

Thus, on a strawberry dataset, this thesis evaluates the performance of two 

major models with distinct abilities (LSTM, which leverages temporal correlation, 

and CNN-LSTM, which leverages spatio-temporal relationships). According to 

domain knowledge, the default belief is that CNN-LSTM will outperform LSTM, and 

the task of the experiments is to prove otherwise. 
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A self-layer was added to the LSTM model and the LSTM portion of the CNN-

LSTM to further investigate their efficiency after optimization. This fusion is based 

on the research of Asmaa Fahim et al. (2021), who explain that with self-attention, 

each data input can be assigned more detailed and different weights to avoid 

missing essential and critical information. They cited Bahdanu et al. (2014) and 

claimed that attention is primarily proposed to overcome RNN shortcomings and 

optimize the LSTM network. This thesis employs self-attention to optimize the 

LSTM model, and it is assumed that the LSTM with self-attention mechanism will 

outperform the ordinary LSTM, as will the attention-based CNN-LSTM outperform 

the ordinary CNN-LSTM. Additional goal of these experiments will be to prove 

otherwise. 

The final argument is based on the sensitivity and significance of 

hyperparameters in Deep Neural Networks (DNN) models such as the ones used in 

this thesis. In a study that compared manual tuning by human experts to 

automated hyperparameter optimization for seven hyperparameters of a CNN 

model, J. Snoek et al. (2012) found that the automated technique outperformed 

human experts. In contrast, Hyunghun et al. (2020) stated that deep learning 

researchers are hesitant to use this automated technique because most existing 

automated procedures are incapable of using previously learned knowledge. 

Another reason given by the researchers is the possibility of a disastrous failure. 

This study investigates both ends of the above arguments: the automatic 

technique using Bayesian optimization and the manual handling. As described in 

section 4.2, the hyper-parameters for the processes were logged automatically. 

This provides a wealth of data for analysis and discovery of the fair method based 

on the least amount of error of the test dataset. It is worth noting that this process 

was only performed on the LSTM model, and the goal is not to justify the better 

approach, but rather to report the observations based on the dataset used and the 

model implemented. As a result, the outcome may differ in other study.  
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This thesis pursues three fundamental experimental goals. Hypotheses will 

be tested in the three experiments, and decisions will be made based on majorly, 

the R2-score, MAE on the test data, and other relevant logged metrics. The details 

of the experiment are shown in Table 4.1. 

ID Experiment Type Null hypothesis (H0) 

Based on R2-Score 

Alternate 

hypothesis (H1) 

Based on R2-Score 

 

1 LSTM vs CNN-LSTM CNN-LSTM > LSTM LSTM > CNN-LSTM  

2 Self-attention(LSTM) vs LSTM Attention(LSTM)>LSTM LSTM > 

Attention(LSTM) 

 

3 Attention(CNN-LSTM) vs CNN-

LSTM 

Attention(CNN-LSTM) > 

CNN-LSTM 

CNN-LSTM > 

Attention(CNN-

LSTM) 

 

Table 4.1: Experiment type and hypothesis formulation 

Data was gathered as described in section 4.2, and for the experimental 

task, five data samples with varying hyperparameter combinations and metrics 

were accessed from the cloud storage and used. The created data for the scenarios 

is embed in table 4.2 below. 
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Scenarios Data File Sample size 

LSTM strawberry modelling 

LSTM_Hyperparams.c

sv
 

56 runs 

CNN-LSTM strawberry 

modelling 
CNN_LSTM_Hyperpar

ams.csv
 

72 runs 

Self-Attention LSTM 

strawberry modelling 
Self-Attention LSTM 

Hyperparams.csv
 

17 runs 

Self-Attention CNN-LSTM 

CNN-LSTM with 

Self-Attention.csv
 

58 runs 

Bayesian Hyperparameter 

Optimization 
Bayesian-Hyperpara

ms.csv
 

100 runs 

Table 4.2: Table showing various case scenarios and the analysed data 

Section 4.2 contains the host link to the data contained in the embed CSVs. The 

following section presents the results of the experiments conducted in response to 

the scenarios created. 

4.3 Experiment Results 
  The previous section discussed the scenarios that supplemented the 

experimental arguments and design. This section presents the results of the 

experimental type's analysis.  

Examining the manual versus automatic tuning arguments 

It begins by observing the automatic hyperparameter tuning (via a Bayesian 

technique) and the manual tuning process for the LSTM model only. The 

observations’ outcome is graphically represented with appropriate details. This 

thesis does not choose which of the two ways is superior; instead, it concentrates 

on reporting the observations. 
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Figure 4.2: Graphical illustration of the Bayesian detected least Validation MAE(val_mae) and the 

Training data MAE(mae) over a fixed epoch size of 300. 

 

 

Figure 4.3: Graphical representation of the Bayesian detected Training-loss (loss) and Validation 

loss (val_loss) based on the least Validation Mae over a fixed epoch size of 300. 
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The graphs of the training MAE and loss versus their respective validations 

are displayed in Figures 4.2 and 4.3. The graphed losses are based on the least MAE 

on the validation data because it is generally agreed that a model generalizes well 

with low errors on validation set. 

In this optimization, the goal is to reduce the objective function loss on the 

train data and also minimize the error metric, MAE, on the test data. The graphs 

above represent the result of the hyperparameters that were optimized based on 

recommendations from the Bayesian process (BP) or automatic tuning. The other 

hyperparameters determined by the BP are presented in table 4.3 below. The 

training epoch was manually set at 300. 

Determined 

Hyperparameters by the 

BP 

Value 

Batch size 30 

Learning rate 0.001 

Optimizer Adam 

Num of Layers 8 

Table 4.3: combination of hyperparameters from a BP(least MAE) 

Figures 4.2 and 4.3 indicate that the training loss and validation loss both 

gradually reduce and exhibit stability between epoch sizes of 50 and just above 

100. The graph indicates that the model appears to begin overfitting at an epoch 

not far from 300. The training MAE and validation MAE both exhibit the same 

behavior. 

Finally, the BP automatically identifies and suggests model layers with a 

high probability of achieving both the minimum validation loss and minimum 

validation MAE, as shown in the data in figures 4.2 and 4.3, in addition to the 

suggested hyperparameters, which could result in improved model performance. 

The summary and stacking of the layers of the BP-engineered model are shown in 

Figure 4.4.  
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Figure 4.4: Proposed LSTM layers by the Bayesian Process of automatic tuning. 

The train and validation loss of the largest validation MAE, together with the 

model summary as engineered by the BP is shown in figures 4.5, 4.6 and 4.7 below. 

 

Figure 4.5: Graphical representation of the Bayesian detected Training-loss (loss) and Validation 

loss (val_loss) based on the least Validation Mae over a fixed epoch size of 300. 
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Figure 4.6: Graphical illustration of the Bayesian detected largest Validation MAE(val_mae) and 

the Training data MAE(mae) over a fixed epoch size of 300. 

 

 

Figure 4.7: BP-detected model summary with layers based on the largest validation MAE 
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Determined Hyperparameters by 

the BP 

Value 

Batch size 64 

Learning rate 0.001 

Optimizer Adam 

Num of Layers 3 

Table 4.4: combination of hyperparameters from a BP(largest MAE) 

Figures 4.5 and 4.6 show two parallel lines that don't meet at any point. This shows 

the inability of the model to learn and demonstrates how the error level affects 

how well the model performs.     

 Repeating the aforementioned steps for the LSTM model created through 

manual hyper-parameter tuning is the next step in the observation process. A 

manually tweaked LSTM model's training and validation loss graph at 200 epochs is 

shown in Figure 4.8. 

 

 

Figure 4.8: The train and validation loss of manually tuned LSTM at 200 epochs 
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Adam is the optimizer, and the other manually adjusted hyperparameters 

are batch size (16), learning rate (0.001), and number of layers (9). According to 

the data with green highlights, the validation loss converged after around 100 

rounds. The training and validation MAE are graphically represented in Figure 4.9 

under the identical set of circumstances as Figure 4.8. 

 

Figure 4.9: Graph of the training and validation MAE for manually tuned LSTM hyperparameters  

Figure 4.9 shows that in a 200-training epoch, the minimal validation MAE is 

attained after the 101st iteration. In this chapter's discussion part, a thorough 

comparison will be made with respect to previously shown graphs. It should be 

noted that figures 4.8 and 4.9 are plotted based on the least validation MAE. 
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The training and validation graphs of the MAE and loss, respectively, for the 

manually adjusted LSTM hyper-parameters based on the largest validation MAE are 

shown in Figures 4.9(a) and 4.9(b). 

 

Figure 4.9(a): Training and validation MAE of the manually tuned hyperparameters based on the 

largest validation MAE 
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Figure 4.9(b): Training and validation loss of the manually tuned hyperparameters based on the 

largest validation MAE 

Figures 4.5, 4.6, 4.9(a), and 4.9(b) all follow a similar graphical pattern and 

consistently show the nature of models that are rife with errors and fail to 

converge. The hyper-parameters for the graphical output in figures 4.91 and 4.92 

are batch size (300), epochs (500), learning rate (0.0001), number of layers (7), 

and Adam is the optimizer. 

Figure 4.9(c) displays the layers and summary of the manually tuned LSTM 

model with the least validation MAE. Figure 4.9(d) displays the same but with the 

largest validation MAE. 
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Figure 4.9(c): Model summary showing the layers of the manually tuned LSTM with the least MAE 

 

Figure 4.9(d): Model summary showing the layers of the manually tuned LSTM with the largest MAE 
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Figures 4.9(c) and 4.9(d) clearly share the same model architecture, layers, 

etc., but because of the varied hyper-parameter combinations chosen, they 

perform very differently. This underpins the sensitivity and significance of 

hyperparameters in DL. 

As anticipated in this dissertation, the last argument outlined in section 

4.2.2 has been looked into, and both sides of the debate between manual and 

automatic tuning have been examined. The stated results will be compared, and 

also the outcomes of the other arguments will be looked at next in the discussion 

portion of this chapter.    

Experiment ID: 1 (LSTM vs CNN-LSTM) 

 This experiment aims to compare the capabilities of CNN-LSTM with LSTM. 

The three main logic used for this performance comparison are; 

• The train MAE and the validation MAE are used during the training process. 

On the test data, the MAE was used for evaluation. This was done to 

understand the generalization properties of each model and to estimate the 

loss function of the model. 

• R2-score-based interpretation of the input variables by the model. This is 

done in order to determine the model that fit the regression line better. 

This is an interpolation task which uses in-sample data and gauges the 

predictive ability of the model. 

• Forecasting strength using the R2-score and the MAE as indicators.  This 

forecasting exercise aids in evaluating each model's capacity for 

extrapolating predictions from out sample. In other words, this assignment 

reveals how effectively the model can forecast long into the future, beyond 

the test dataset's last date. In essence, it will assess the model's aptitude in 

a real world noisy data. 

Note: the models considered are those which give the best accuracy after several 

hyper-parameter combinations. Thus, the hyper-parameters for each of the 

presented models are noted for comparison for this experiment and others. Figure 

4.9(e) shows the train and validation MAE graph for the best hyper-parameter 

combination of the CNN-LSTM model. 
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Figure 4.9( e): Log graph showing the validation MAE, training MAE, and the final MAE on the 

validation data  for the CNN-LSTM model. 

The variable minimum error in figure 4.9(e) represents the MAE for the test 

set of data. Except for a slight increase in errors near the end of the training 

phase, the graph appears to match well overall. The slight increase in error might 

indicate overtraining brought on by relatively long epochs. A batch size of 32, 300 

epochs, a learning rate of 0.01, and Adam as the optimizer were the model's 

hyperparameters. In comparison to the MAE, the model's predicted accuracy on the 

test data was 79.7%. (see figure 4.9f). 
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Figure 4.9(f): Log-scaled graphical representation of the relationship between the CNN-

LSTM MAE and the R2-score on the test dataset 

A predictive accuracy of 78.2% in regard to the MAE is shown by the LSTM 

with the optimal hyperparameter combination (batch size of 50, learning rate of 

0.001, 100 epochs, Adam as optimizer) on the test data. The training and 

validation MAE over the training procedure is shown in Figure 4.9(g).  
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Figure 4.9(g): Log graph showing the validation MAE and training MAE on the validation data  

for the LSTM model. 

Unlike the CNN-LSTM, the training process here converge faster although the 

training time is lower. The charts in fig 4.17 shows the relationship between the 

LSTM model’s MAE and it accuracy on the test data. 

 

Figure 4.9(h): Log-scaled graphical representation of the relationship between LSTM MAE 

and R2-score on the test dataset 
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Figures 4.9(f) and 4.9(h) show that the CNN-LSTM has a slightly higher error 

level than the LSTM, with the latter having a higher accuracy of 79.7%. Perhaps a 

better fit (using R2) of the regression model doesn't quite imply a lower prediction 

error. On the other hand, the observation could be due to the insignificant 

difference in R2-scores between the two models. However, further investigation 

into other experiments may provide more clarity. 

Table 4.1 shows the combination of hyperparameters for the two models 

and their resulting metrics 

Model Batch 

size 

Epochs Learning 

rate 

Optimizer R2-score 

(%) 

Test MAE 

 

CNN-LSTM 32 300 0.01 Adam 79.7 4693.1 

LSTM 50 100 0.001 Adam 78.2 4628.5 

Table 4.4: Table showing the hyperparameter combinations of the two models 

On the test data, the training process, hyper parameter combinations, and 

predictive capacity of the CNN-LSTM and the LSTM have all been investigated. The 

forecasting capability of these models will be examined next. 

This study takes into account forecasting horizons of 7 weeks, 14 weeks, and 

28 weeks. The forecasting horizon refers to the number of weeks after the last 

date of test data. Thus, the skill of each model over a range of three horizons in 

order to know their reliability in forecasting future demand is used to evaluate 

their performance. Figures 4.9(i), 4.9(j), and 4.9(k) depict the LSTM model's 

forecast over these three horizons, along with their R2-scores and MAE. 
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Figure 4.9(i): Graphical Illustration of the LSTM  7weeks likely demand forecast 

 

Figure 4.9(j): Graphical illustration of the LSTM 14weeks likely demand forecast  
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Figure 4.9(k): Graphical illustration of the LSTM 28 weeks likely demand forecast 

The skill of the CNN-LSTM is then assessed over the same forecast horizon. 

This is depicted in Figures 4.(l), 4.9(m), and 4.9(n). 

 

Figure 4.9(l): Graphical illustration of the CNN-LSTM 7weeks likely demand forecast. 

 

 



64   
 

64 
 

 

Figure 4.9(m): Graphical illustration of the CNN-LSTM 14weeks likely demand forecast 

 

Figure 4.9(n): Graphical illustration of the CNN-LSTM 28 weeks likely demand forecast 

The graphical illustration of each model’s forecast in steps of 7, 14, and 28 

weeks alongside their respective R2-score and MAE has been shown for this 

experiment. The decision to increase the forecast horizon to 28 weeks adds a level 

of difficulty to the forecasting problem. Doing this would further showcase the 
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efficacy of the models. Table 4.5a, 4.5b and 4.5c show the tabulations of the key 

metrics of each model over the specified time horizons. 

Model R2-score(%) MAE 

LSTM 66.7 6551.7 

CNN-LSTM 80 2619 

Table 4.5a : Key metrics of LSTM and CNN-LSTM in 7 weeks forecast 

 

Model R2-score(%) MAE 

LSTM 61.1 6040.9 

CNN-LSTM 65.9 4070 

Table 4.5b : Key metrics of LSTM and CNN-LSTM in 14 weeks forecast 

 

Model R2-score(%) MAE 

LSTM 61.1 5667.3 

CNN-LSTM 58.9 4277.0 

Table 4.5c : Key metrics of LSTM and CNN-LSTM in 28 weeks forecast 

Experiment ID: 2 (Self-Attention LSTM vs LSTM) 

 The experimentation procedure is the same as in the previous experiment. 

The difference is that the analysis would only be performed on the self-attention 

LSTM model and would not be repeated on the LSTM model. The first phase of the 

analysis presented was done to understand the training process, estimate the loss 

function and how well the self-attention model generalizes on the test data 

compared to the LSTM. 
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Figure 4.9(o): Graphical training trend of the Self-Attention based LSTM model over an epoch size 

of 300 

The MAE on the test set for the under-review model is displayed above. In 

comparison to the LSTM model, it reveals a lower value. The requirement to 

optimize the LSTM led to the addition of the attention layer in this model. The 

optimized model was with the hyper-parameter combination of batch size (16), 

epochs (300), learning rate (0.01) and Adam as optimizer.  

Furthermore, the predictive capacity (accuracy against error) of the self-

attention LSTM was observed in figure 4.9(p). In comparison to the LSTM, table 4.6 

shows the two models (LSTM and Self-attention LSTM) summarized parameters over 

the training process and predictive ability. 

Model Batch 

size 

Epochs Learning 

rate 

Optimizer R2-score 

(%) 

Test MAE 

 

Self-

Attention-

LSTM 

16 300 0.01 Adam 80.5 4223.7 

LSTM 50 100 0.001 Adam 78.2 4628.5 

Table 4.6: Table showing the hyperparameter combinations and the key performance 

metrics of the two models 
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Figure 4.9(p): Log-scaled graphical representation of the relationship between Self-

Attention LSTM MAE and R2-score on the test dataset. 

Over the same forecasting horizons as previous models, the self-attention 

LSTM's forecasting power is evaluated. Figures 4.9(q), 4.9(r) and 4.9(s) illustrates 

these findings. The LSTM and self-attention LSTM's forecasting ability is 

summarized in Table 4.7. 
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Models R2-score (%) MAE Forecasting 

Horizons(week) 

 

LSTM 66.7 6551.7 7 weeks  

LSTM with 

Attention 

78.5 5804.4 7 weeks  

LSTM 61.1 6040 14 weeks  

LSTM with 

Attention 

70.7 5524.8 14 weeks  

LSTM 61.1 5667.3 28 weeks  

LSTM with 

Attention 

67.7 5253 28 weeks  

Table 4.7: Summary of the LSTM and LSTM with Attention forecasting metrics 

 

Figure 4.27 (q): 7 weeks forecast with Self-Attention LSTM 

Figure 4.9 (r): 14 weeks forecast with Self-Attention LSTM 
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Figure 4.9(s): 28 weeks forecast with Self-Attention LSTM 

Experiment ID: 3 (Self-Attention CNN-LSTM vs CNN-LSTM) 

 The thesis's final suggested experiment is this one. It compares the CNN-

LSTM's performance to that of its enhanced version with the attention mechanism. 

To make the most efficient use of time, the outcomes of the three main 

procedures—training, prediction, and forecasting—are tabulated, and the graphs 

can be viewed in Appendix B (Figures B1, B2 and B3). The prediction capability of 

each model is shown in Table 4.8, and Table 4.9 displays the models' relative 

forecasting performance across a 28-week time horizon. 

Model Batch 

size 

Epochs Learning 

rate 

Optimizer R2-score 

(%) 

Test MAE 

 

Self-

Attention-

CNN-LSTM 

50 400 0.009 Adam 70.8 5463.4 

CNN-LSTM 32 300 0.01 Adam 79.7 4693.1 

Table 4.8: Table showing the hyperparameter combinations and the key performance 

metrics of the two models. 
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Models R2-score(%) MAE Forecasting 

Horizons(weeks) 

 

CNN-LSTM 80 2619 7   

CNN-LSTM 

with 

Attention 

64.3 3771.0 7  

CNN-LSTM 65.9 4070 14   

CNN-LSTM 

with 

Attention 

24.4 5400.6 14  

CNN-LSTM 58.9 4277 28  

CNN-LSTM 

with 

Attention 

61.5 4366.8 28  

Table 4.9: Summary of the CNN-LSTM and CNN-LSTM with Attention forecasting metrics 

4.3 Discussion 
The previous sections of this chapter described the experimental setup and 

results presentation. This section concludes the chapter by interpreting and 

discussing the experimental findings. The sectional analysis presented in the 

results will guide the structural flow of the discussion. 

To begin, both sides of the debate between manual and automatic hyper-

parameter tuning using BP were investigated, with the goal of reporting 

observations rather than determining the better process. The analysis of the 

training and validation losses based on the least MAE revealed a matching pattern 

in the training processes, indicating similarity in loss values (see figures 4.2 and 

4.3). This could be a source of strength for BP proponents.  

  Furthermore, the BP (Bayesian Process) process's suggested model 

architectures (see figure 4.4), assumed to be the optimized architecture, revealed 

the addition of the attention mechanism to its LSTM model optimization process. 

This BP result is consistent with the findings of Bahdanu et al., who argue that the 

attention mechanism aids in the optimization of LSTM networks. The motivation 
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for optimizing the LSTM model with an attention layer in this work is based on 

Bahdanu et al., not on the assumed strength of the BP. 

A discovery made during the BP-process in this work, on the other hand, 

revealed ambiguity in its process. Despite the fact that model structures and other 

key components are suggested, at least one or more hyperparameter ranges were 

set and a large number of runs were run, resulting in a list of possible runs that 

includes the potential low-performing recommendation. This could potentially 

strengthen BP's opponents' arguments. 

The first experiment in this work sought to determine the better model for 

strawberry likely demand forecasting between LSTM and CNN-LSTM. Three distinct 

approaches were used, but the main yardstick is the ability of the two models to 

forecast using R2-score as the indicator. The other approaches were added to put 

the models' skill to the test. 

With Adam as the optimizer, CNN-LSTM achieved 79.7% predictive accuracy 

on the test dataset with a batch size of 32, an epoch of 300, and a learning rate of 

0.01. Figure 4.15 depicts the model's error level. The LSTM's predictive accuracy is 

78.2% with a lower learning rate, which means convergence is slower, and a batch 

size of 50 with a lower training epoch of 100, which could translate to lower 

computational cost. Although the LSTM accuracy is slightly lower than that of the 

CNN-LSTM, this seemingly small margin can be useful when forecasting in tons. The 

difference in MAE indicates that the CNN-LSTM accumulated 64 units of error more 

than the LSTM. 

The results of the forecasting skill test for both models over a forecast 

horizon (in weeks) of 7, 14, and 28 show that the CNN-LSTM outperforms the LSTM 

except for week 28, where the LSTM outperforms. The accuracy decreases as the 

forecasting horizon increases, which is ideal except for the LSTM, whose accuracy 

remained constant from week 14 to week 28. Surprisingly, as the CNN-LSTM 

accuracy decreases, so does its MAE, implying a logical correlation. It is the same 

for LSTM too. In general, this forecasting task demonstrates the increase in error 

as the forecasting horizon becomes longer. 
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The same procedure is repeated in the second experiment, but this time 

between the LSTM and its optimized variant with the Self-Attention layer (Self-

Attention LSTM). The error level is lower when compared to the LSTM. This was 

accomplished using the hyperparameter combination shown in Table 4.6. The 

tabulated data revealed that the attention-based model had a predictive accuracy 

of 80.5%, which was 2.3% higher than the normal LSTM. Similarly, on the test data, 

the LSTM with attention mechanism has a lower error level, 404.8 unit lower, than 

the ordinary LSTM . Thus, across the stated metrics, attention-based LSTM shows a 

better prospects than the ordinary LSTM in terms of predictive skill and minimizing 

loss. 

To further investigate, the forecasting abilities of the attention-based LSTM 

and the ordinary LSTM were assessed over the same forecast horizons as previously 

(see figures 4.27a, 4.27b, and 4.27c). The results, as shown in table 4.7, further 

validate the superiority of attention-based LSTM over ordinary LSTM. Again, as the 

forecasting horizon lengthens, both models' forecasting abilities deteriorate. 

However, there was an irregular pattern of error reduction as accuracy increased. 

Unlike the CNN-LSTM, which captures the logical trend. 

The last experiment compares the Self-Attention CNN-LSTM to the CNN-

LSTM. Similar procedures were used, and CNN-LSTM accuracy of 79.7% 

outperformed the Self-Attention CNN-LSTM accuracy of 70.8%. (see table 4.8). 

Furthermore, CNN-LSTM reduces errors better than the CNN-LSTM with the self-

attention mechanism, with an error unit of 770 lower. Furthermore, the CNN-LSTM 

was optimized at 300 epochs and a 0.01 learning rate, resulting in a shorter 

computation time than the other model with 400 iterations and a 0.009 learning 

rate. 

The models' propensity for forecasting was also assessed. This validates the 

CNN- LSTM's predictive capability to attention-based alternatives (see table 4.9). 

The CNN-LSTM outperforms its  attention-based variations in terms of accuracy 

over all forecasting horizons. The models display similar trends in that their 

forecasting accuracy is inversely correlated with their errors. That is, the 

forecasting accuracy increases as the MAE decreases. Because of this, CNN-LSTM 

has lower error rates over all forecasting horizons, making it even preferable. 
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The experimental objectives in this section have been met, and the choice about 

the hypothesis is shown in table 4.9(a). 

ID Experiment Type Null hypothesis (H0) 

Based on R2-Score 

Alternate 

hypothesis (H1) 

Based on R2-

Score 

Decision 

1 LSTM vs CNN-LSTM CNN-LSTM > LSTM LSTM > CNN-

LSTM 

Accept 

H0 

2 Self-attention(LSTM) vs 

LSTM 

Attention(LSTM)>LSTM LSTM > 

Attention(LSTM) 

Accept 

H0 

3 Attention(CNN-LSTM) vs 

CNN-LSTM 

Attention(CNN-LSTM) > 

CNN-LSTM 

CNN-LSTM > 

Attention(CNN-

LSTM) 

Reject 

H0 

Table 4.9(a) : Table showing the hypothesis and decision made 

In general, the importance of the attention mechanism became apparent 

when it was included in the LSTM model, but the CNN-performance LSTM's was not 

enhanced by the attention effect. Additionally, attention layers were added to the 

top three purportedly optimized LSTM model architectures produced by the 

Bayesian approach (these architectures are logged in Mlflow)..  

The argument made by Bahdanu et al. that the attention mechanism can be 

employed to optimize the LSTM model serves as a possible illustration of this. The 

self-attention LSTM performs best for these experiments and the data used, 

followed closely by the CNN-LSTM model, the LSTM, and the attention-based CNN-

LSTM. In alignment with this dissertation’s goal, an attention mechanism optimized 

LSTM model performs better than the attention mechanism optimized CNN-LSTM. 

4.3 Summary  
 The proposed models were put to the test to see how well they could 

predict and forecast. In order to describe the observation on the Bayesian process 

for LSTM model tuning, the two sides of the arguments were looked at. at the end, 

it was discovered that upon optimization of the two major models (LSTM and CNN-

LSTM) with the attention mechanism, the LSTM model performs better than the 

CNN-LSTM.  The chapter came to a close with a thorough analysis of the results. 
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Chapter 5 

5.1 Conclusion 
In order to estimate likely demand, this thesis built, assessed, and 

determined which of the LSTM and CNN-LSTM models performed better following 

optimization on a strawberry dataset. The self-attention-based mechanism was 

used to optimize the models. Due to this, it was discovered that the LSTM (after 

optimization) performs better than the CNN-LSTM (after optimization) . Prior to 

optimization, CNN-LSTM performed better. 

The minimization of errors throughout the training phase, the predictive 

abilities using the R2-score on the test dataset, and the forecasting abilities across 

a maximum forecasting horizon of 28 weeks were all used to evaluate each model's 

performance both before and after optimization. Overall, it was found that the 

optimized LSTM was better.  

Even though the Bayesian technique was used to identify optimized 

hyperparameter combination for the LSTM only, decision was not made based on it 

but rather gave the opportunity to explore the two sides of an argument. That is, 

observing the pattern between manual and automatic hyperparameter tuning. 

These decisions were the result of thorough and organized experimental 

approaches. Machine learning flow (Mlflow), which enables logging of all model 

parameters, artefacts, and hyper-parameters at scale during each run, was used to 

set up the experiment. This prompted the development of data, which is a crucial 

component of the ML process. Due to the pipeline established, new data were 

generated in addition to the original strawberry data. 

The CNN-LSTM outperforms the LSTM before optimization (using attention 

mechanisms), indicating that it is more accurate at prediction than the LSTM, 

which relies on the temporal relationship between data. After optimization, the 

LSTM with attention outperformed CNN-LSTM.  

The outcome after optimization provides avenue to further explore, in 

future research, the predictive ability of a temporal model, when the focus 

(attention in the context of this research) is on the most important input out of 

very many others. 
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The spatio-temporal relationship based CNN-LSTM has the capacity to 

observe and extract the most crucial information from the input for LSTM 

prediction. This can imply that when a model that leverages temporal relationship 

is focuses on the most crucial feature (as is the case when CNN and attention were 

added to the LSTM) it performs better. 

The results of the attention-based CNN-LSTM are intriguing. Even when 

compared to the standard LSTM model, the performance was poor. Although it is 

acknowledged that this thesis did not examine all possible optimization strategies, 

it would be beneficial to investigate the impact of feeding the LSTM model with 

‘overly focused or too important input’ in light of the findings of this dissertation. 

The underlying concept of this proposition is that with CNN-LSTM, key 

characteristics are extracted and input into the LSTM. As seen in this work, the 

performance was comparable to that of the attention-based LSTM. After the 

significant feature has been retrieved, the LSTM model is supplied with it, along 

with an attention mechanism that will further weight the input that is even more 

significant. The observed performance of the attention-based CNN-LSTM was poor 

in this aspect, as demonstrated in this work. Could this excessively narrow 

emphasis on a crucial LSTM model input be a benefit or a drawback? Future 

research projects can examine these observations. 
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5.2 Limitations: 
The following are the limitations of this study: 

1.) The direct quantity of strawberries purchased was unable to be accessed 

due to the decline in requests made to connect to the USDA API. Thus, the 

number of advertising stores, which also reflects consumer purchasing 

patterns for at least a unit of strawberry, was used as the likely demand. 

2.) Only a few model optimization techniques were considered, the effect of 

which could perhaps be the reason of some underperforming models.  

3.) Demand forecasting is a means to an end, not the end, in the intricate food 

supply chain network. As a result, this dissertation did not consider how 

forecasting the  demand and the modelling of all other constraints, such as 

the procurement of materials and other climatic conditions, affect or 

influence business decisions, profit, or loss in a supply chain network. 

4.) The error metrics used in this study have their own limitations. The model 

selection criteria were based on the R2-score only. Perhaps, the criteria for 

selection could have been better done using approaches like the Bayesian 

information criterion, Akaike information criterion, etc. 

5.) The models' forecasting and predicting abilities may have been evaluated on 

a different dataset in order to evaluate their effectiveness in applications 

other than the strawberry dataset.   

6.) Inability to gain access to the USDA API makes the forecasting not real-time. 

7.) The DL network's stochastic nature causes the performance score to vary 

slightly during the course of separate runs. 

8.) A what-if analysis tool could have been used to examine to a greater extent, 

the impact of each input variables. 
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Appendix A 

Model Artifact and Requirement 

 

Figure A.1: A screenshot of the MLFlow experiment set up and runs 

 

Figure A.2: A screenshot of the logged metrics with MLFlow  

 

 

 

 

 

 

 

 



84   
 

84 
 

Appendix B 

Graphs and chart 

 

Figure B1: Attention-based CNN-LSTM 7 weeks forecast 

 

Figure B2: Attention-based CNN-LSTM 14 weeks forecast 
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Figure B3: Attention-based CNN-LSTM 28 weeks forecast 

 


