

1 | P a g e

MSC APPLIED ARTIFICIAL INTELLIGENCE AND DATA
SCIENCE

SEPTEMBER 2022

GABRIEL OSI BRAIMAH

BRIDGING THE COMMUNICATION GAP BETWEEN
THE PUBLIC AND BSL SIGNERS WITH SEVERE

HEARING LOSS USING ARTIFICIAL INTELLIGENCE

SOLENT UNIVERSITY

FACULTY OF BUSINESS, LAW AND DIGITAL
TECHNOLOGIES

2 | P a g e

SOUTHAMPTON SOLENT UNIVERSITY

FACULTY OF BUSINESS, LAW AND DIGITAL
TECHNOLOGIES

BRIDGING THE COMMUNICATION GAP BETWEEN THE PUBLIC

AND BSL SIGNERS WITH SEVERE HEARING LOSS USING
ARTIFICIAL INTELLIGENCE

BY

GABRIEL OSI BRAIMAH

STUDENT NUMBER: Q15695786

SUPERVISOR: Dr FEMI ISAAQ

SEPTEMBER 2022

PROJECT IN PART FULFILMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTERS

IN

 APPLIED ARTIFICIAL INTELLIGENCE AND DATA
SCIENCE

3 | P a g e

Abstract

Finding an effective artificial intelligence real time sign language recognition
translator is still a barrier even with recent advancements in computer vision and
machine learning more so for British sign language users as bulk of the research has
been done on American and Indian sign language. There have been methods
proposed to tackle the challenges of building an effective SLR translator using data
gloves, arm sensors and computer vision. Every other method aside the computer
vision method is intrusive, computationally intensive and can be inconvenient
which makes them unscalable at least for now. This work aims to present a vision-
based realistic approach to bridging the communication gap between the public
and the deaf-dumb community of British sign language users using a real time BSL
to English language translator capable of recognizing both static and dynamic BSL
gestures. A webapp was built using the Streamlit framework which hosts the deep
learning systems trained to recognize the BSL signs. The system uses a webcam to
feed live images to the mediapipe holistic model which detects the pose and hand
landmarks, the landmarks are then extracted, pre-processed, and fed to the deep
learning models for classification with each model achieving over 90% accuracy on
test data and the GRU model having 85% accuracy in real time test using just the
hand landmarks to make prediction.

4 | P a g e

Acknowledgement

I wish to thank the almighty for giving me this privilege to be in a position where I
can learn so much. I would also like to thank my supervisor Dr Femi Isiaq for
pushing me to be the best and I can be and meticulously guiding me through the
process. I would also like to thank all my friends that have been supportive and
have made Solent university a pleasurable experience.

Finally, I would like to thank my family for giving me the strength needed to keep
pushing. I would not have made it this far without their loving support.

5 | P a g e

Table of Contents

Abstract .. 3

Acknowledgement .. 4

Chapter 1 .. 9

1.1 Chapter overview ... 9

1.2 Introduction ... 9

1.3 Background .. 11

1.4 Research question .. 12

1.5 Problem Statement .. 12

1.6 Value Proposition ... 12

1.7 Success Metrics ... 12

1.8 Aim .. 13

1.9 Objectives .. 13

Chapter 2 .. 14

2.1 Related Studies ... 14

2.1.1 Chapter overview.. 14

2.1.2 Wearables method review .. 14

2.1.3 visual-based method review ... 15

2.1.4 Mediapipe method review ... 17

Chapter 3 Methodology .. 20

3.1 Chapter Overview ... 20

3.2 Proposed Method .. 20

3.2.1 Dataset ... 21

3.2.2 OpenCV ... 22

3.2.3 Mediapipe ... 22

3.2.4 LSTM .. 24

3.2.5 GRU ... 25

3.2.6 Random Forest Classifier ... 25

3.2.7 Streamlit... 26

3.2.7 1D convolutional neural network ... 26

Chapter 4 .. 28

4.1 Chapter overview ... 28

4.2 Implementation .. 28

4.2.1 input .. 28

4.2.2 Detect key points using mediapipe ... 29

6 | P a g e

4.2.3 Drawing of landmarks .. 29

4.2.4 Dataset generation ... 30

4.2.5 Extract datapoints .. 31

4.2.6 Create folders.. 32

4.1.7 save key points .. 32

4.2.8 Data pre-processing.. 32

4.2.9 model building and training .. 34

4.2.13 Graphical user interface ... 37

4.2.13.1 Description ... 37

4.2.13.2 Detection .. 38

4.2.14 Model evaluation .. 40

Chapter 5 .. 42

5.1 Chapter overview ... 42

5.2 Result .. 42

5.3 Results for the Model Evaluation ... 43

5.3.1 GRU ... 43

5.3.2 LSTM .. 45

5.3.3 CONV1D... 47

5.4 Discussion... 50

Chapter 5 .. 52

5.1 Summary .. 52

5.2 Conclusion.. 52

Limitations.. 53

Recommendations/Future work ... 53

References ... 55

Appendix .. 57

Section A Ethics Application form .. 57

Section B: Evaluation figures .. 60

Section C: Entire code for implementation.. 68

7 | P a g e

Table Of Figures

Figure 1: Artificial intelligence .. 10
Figure 2:Relation between Artificial Intelligence, Machine Learning and Deep
Learning, Computer Vision. [Mohammed 2022] ... 10
Figure 3: cumulative publications on intelligent SLR systems from the scopus
database (Adeyanju 2021) ... 11
Figure 4: Block diagram of intended model ... 21
Figure 5:sample of dataset... 21
Figure 6: Object detection using mediapipe (LUGARESI, C. et al., 2019.) 22
Figure 7: mediapipe key points of hands ... 23
Figure 8: figure showing the mediapipe hand detection and posture keypoints 23
Figure 9: LSTM Cell (T, R., 2020.) ... 24
Figure 10: GRU cell (KHANDELWAL, R., 2019.) .. 25
Figure 11: Random Forest Classifier diagram(IBM) 26
Figure 12:code snippet showing the housed Braimah class variables 28
Figure 13:OpenCV function to read images from camera 29
Figure 14: mediapipe holistic key point detection code snippet 29
Figure 15: code snippet to draw the landmarks ... 30
Figure 16:code for dataset generation ... 30
Figure 17: code snippet for mediapipe key point extraction 31
Figure 18: code snippet for creating folders .. 32
Figure 19:code snippet for the save_keypoints function 32
Figure 20: code snippet for alphabet dictionary creation 33
Figure 21: code snippet or loading files .. 33
Figure 22: code snippet for X values creation ... 33
Figure 23: code snippet for Y data creation ... 34
Figure 24: code snippet for dataset splitting .. 34
Figure 25: GRU Model instantiation ... 35
Figure 27: code snippet for CONV1D build ... 36
Figure 28: code snippets for loading models into the GUI environment 37
Figure 29: Gui description.. 37
Figure 30: detection logic for pose and non-pose....................................... 38
Figure 31: code snippet for program flow ... 39
Figure 32: code snippet for classification report 40
Figure 33: code snippet for multiple confusion matrix 40
Figure 34: code snippet for accuracy score .. 40
Figure 35:code snippet to print multiple confusion matrix 41
Figure 36: Result using pose estimation .. 42
Figure 37: Result without pose estimation ... 42
Figure 38: Results of comparative studies ... 43
Figure 39: GRU pose loss plot .. 43
Figure 40: GRU pose classification report .. 44
Figure 41: GRU no pose classification report .. 44
Figure 42: LSTM pose loss plot ... 45
Figure 43:LSTM pose classification report ... 45
Figure 44: LSTM loss plot no pose ... 46
Figure 45: LSTM no pose classification report ... 46
Figure 46: LSTM validation loss vs validation accuracy graph 47

8 | P a g e

Figure 47: CONV1D loss plot no pose ... 47
Figure 48: classification report for CONV1D using the hand landmarks 48
Figure 49: Training plot for CONV1D using pose .. 48
Figure 50: validation loss versus validation accuracy for CONV1D 49
Figure 51:classification report for CONV1D using pose and hand landmarks for
prediction .. 49
Figure 52:confusion matrix for pose LSTM ... 60
Figure 53: LSTM confusion matrix without pose ... 61
Figure 54: confusion matrix for pose GRU ... 62
Figure 55: confusion matrix for non-pose GRU .. 63
Figure 56: confusion matrix for CONV1D no pose 64
Figure 57:confusion matrix for CONV1D using pose and hand landmarks for
prediction .. 65
Figure 58: training parameters for conv1D no pose 66
Figure 59: GRU parameters .. 66
Figure 26:LSTM training parameters .. 67

9 | P a g e

Chapter 1

1.1 Chapter overview

This chapter gives a brief history on sign language and the challenges faced by
people with severe hearing loss. A brief history of artificial intelligence and its sub
areas are also touched. The following areas were also outlined in the section.

• Research question

• Problem statement

• Value proposition

• Success metrics

• Aim

• Objectives

1.2 Introduction

Communication is a very essential part of the daily lives of all animals because it is
the only way to express wants and needs, socialize, share knowledge and as
humans being very expressive this is even more true. Communication can be
verbal, textual, or done through visualizations. Majority of human-to-human
communication is done verbally while a significant number of the deaf-dumb
community communicate using sign language.

Sign language can be described as a language which combines hand gestures and
body language to convey a message [Rustagi, Shaina and Singh, 2021]. As different
verbal languages exist throughout the world so do different sign languages exist
throughout different regions of the world which makes it difficult to have a
standardized sign language which can then be used to build a universal sign
language recognition system. The United Kingdom for example has both the British
Sign language which is focused more on fingerspelling and Makaton which takes a
more general approach by using signs and symbols in conjunction with spoken
words. The price and relative availability of human sign language translators mean
hearing impaired people cannot easily have access to these translators when one is
needed.

British sign language (BSL) like Indian sign language (ISL) majorly consists of using
two hands to form signs and fingerspell words except for the alphabet “C” which
uses one hand while sign language like American sign language use one hand (ASL)
to make signs. The British sign language is used by 151,000 people in the United
Kingdom as stated in the united kingdom’s government’s website. There are only
1540 registered BSL interpreters according to the National Registers of
Communication Professional as of 2019 which is just about 1% of the total users of
BSL.

Artificial intelligence is a broad field encompassing several areas like machine
learning, robotics, computer vision, and deep learning. Artificial intelligence has
been referred to as the scientific approach adopted to make machines smart

10 | P a g e

[Buckley, Sherrett and Secco, 2021]. The influence Artificial intelligence has on
our everyday lives cannot be overstated, it has become so prevalent in our society,
dominated the decision-making process of businesses, and permeated all levels of
our social structure, from the likes of Alexa and Siri to self-driving cars to fraud
detection systems used by banks, the list continues to grow.

Figure 1: Artificial intelligence

Computer vision is a field of artificial intelligence that deals with the development
of computers systems capable of extracting information from images, videos, any
visual inputs, according to international business machines (IBM). The applications
of computer visions systems in an ideal sense are limitless just as the human sight
is to humans. Computer vision is already used in industries like medicine,
manufacturing, self-driving cars, surveillance systems, and the service sector.

Figure 2:Relation between Artificial Intelligence, Machine Learning and Deep Learning, Computer Vision.
[Mohammed 2022]

11 | P a g e

Sign language recognition systems brings together computer vision, machine
learning or deep learning models used for classification and in some cases other
areas of software development like webapp development using streamlit which
was used in this work.

1.3 Background

Since the advancement in computer vision and artificial intelligence the possibility
of building SLR systems became ever more realistic, and a lot of studies have been
done on realising such possibility as shown by (ADEYANJU, I.A., O.O. BELLO and
M.A. ADEGBOYE, 2021).

Figure 3: cumulative publications on intelligent SLR systems from the scopus database (Adeyanju 2021)

The bulk of the research on such intelligent systems have gone to other sign
languages aside the BSL as a simple search as at the time of writing this paper on
the ieeexplore.org website using the combination “British sign language” AND
“machine learning” yields just two results while “British sign language” AND “deep
learning” yields 3 results with one focusing on gestures which makes it semi-
irrelevant to this study.

Two main methods have been adopted by the community in the development of
these systems, and different techniques have been introduced to the data
collection, data pre-processing and classification steps in combination with several
machine learning and deep learning algorithms. One main method involves the
wearing special gloves capable of tracking the movement of the fingers as done by
(Y. MORI and M. TOYONAGA, 2018) and (H. S. ANUPAMA et al., 2021) while the
other main method is vison based and it involves using everyday multimedia
cameras as done (KATOCH, S., V. SINGH and U.S. TIWARY, 2022), (KASAPBAŞI, A. et
al., 2022) and several others. For sign language systems to have its desired societal
function it should be easily accessible, the best approach is to create a system

12 | P a g e

where the images are gotten from normal everyday cameras available in our
electronic devices as it is easily accessible and cheap.

1.4 Research question

is it possible to bridge the communication gap between BSL signers with severe
hearing loss and the public using a visual-based SLR artificial intelligence method.

1.5 Problem Statement

The importance of communication in our everyday lives cannot be overstated as it
forms the backbone of all our social activities. 466 million people suffer from
different levels of hearing loss as stated by the world health organization, this is
5% of the world’s population with the number expected to increase in the coming
years. 11 million people suffer from severe hearing loss and 151,000 of them
communicate using British sign language according to the United Kingdom’s
government. The United Kingdom website on the statistics on people with severe
hearing loss states that, Half of these vulnerable individuals are likely to have poor
mental health and 35% are likely to be unemployed. The data shows that due to
the communication gap these vulnerable individuals with severe hearing loss
cannot fully access the services available to the public, are more likely to be poor
and more like to suffer from mental issues.

1.6 Value Proposition

Having a BSL recognition system that truly bridges the communication gap between
these vulnerable individuals and the public will have some benefits which includes
but not limited to

• Improved Standard of living

• Easier Access to medical services

• Better integration into the society

• Technology pushes people to learn new things because of the ease of access
and use so having such a system will make learning BSL easy and hereby
further help bridge the communication gap.

• Carers don’t have to understand BSL before providing care to vulnerable
people using BSL recognition systems.

1.7 Success Metrics

The success metric for this work is set at 90% and above in a real-world scenario
and not a controlled setting as this work is aimed at taking a realistic step toward
building a BSL recognition system that can be commercially scalable in the future.

13 | P a g e

1.8 Aim

The aim of this project is to develop a BSL recognition system that takes a
substantial first step towards bridging the communication gap between BSL users
and the public.

1.9 Objectives

Meeting the aim of this project require the objectives stated below be met.

• Gather a suitable BSL dataset

• Pre-process the generated data

• Train and evaluate different models

• Form words with classified labels

• Build a webapp using streamlit to host the BSL recognition system.

14 | P a g e

Chapter 2

2.1 Related Studies

2.1.1 Chapter overview

A total of 15 papers were collected and reviewed from both ScienceDirect and
ieeexplore.org. This chapter starts with a review of the studies done using the
wearables approach followed by limitations of that approach. The chapter then
moves on to the literature review about the visual methods focusing on the work
done using CNN in the second paragraph as it is the dominant algorithm used when
dealing with images. The third paragraph focuses on the work done in SLR using
mediapipe. The fourth paragraph gives suggestions on merging both the wearables
and vision approach for SLR is given having reviewed the work done in the papers.
Finally, the chapter ends with a table of the reviewed works in mediapipe
itemizing the important aspects as it relates to this work and giving my comments
on each study.

2.1.2 Wearables method review

15 | P a g e

There are two approaches used in creating a sign language recognition system
which are vision based and wearables-based method. The wearable methods make
use of special gloves or arm sensors. Data-glove technology converts finger
positions to electrical impulses to determine the posture of the hands.

 (Y. MORI and M. TOYONAGA, 2018) proposed a method for developing SLR system
for Japanese sign language that involved connecting data gloves with flex sensors
and accelerometer and a gyro sensor to detect hand motion and shape of each
finger this analogue signal is then converted to digital data by an Arduino data
control unit which is then sent to a decision system, The study achieved an
accuracy of 51%. The design of this approach makes it inconvenient to use coupled
with the low accuracy makes the proposed method unscalable

(H. S. ANUPAMA et al., 202) also used a similar approach to (Y. MORI and M.
TOYONAGA, 2018) but used it with supervised learning process using the k nearest
neighbour and other algorithms. The study also added an audio device to the
gloves that converts the signs to spoken phrases. The k-nearest neighbour achieved
an accuracy of 93% in this study. Like (Y. MORI and M. TOYONAGA, 2018) the design
makes it unscalable. No real time results was reported for the study to check the
accuracy.

(N. TUBAIZ, T. SHANABLEH and K. ASSALEH, 2015) used a modified K-Nearest
neighbour as well as a DG5-V hand gloves embedded with flex sensor and a 3 axes
accelerometer, the glove is also wireless and uses a battery as opposed to previous
works, the proposed method had an accuracy of 98.9%. Data glove technologies
for sign language recognition attempts to circumvent the environmental limitations
of vision-based approaches and these proposed data glove designs can be
considered inconvenient and restrictive by users although

(A. ABDULLAH, N. A. ABDUL-KADIR and F. K. CHE HARUN, 2020) proposed a less
bulky design with fewer sensors, it is still not compact and convenient enough for
everyday use.

2.1.3 visual-based method review

Vision-based approach uses a webcam or in some cases phone cameras to pass in
the required data to the sign language recognition systems. Vision based
approaches are non-invasive and do not require any dedicated hardware making it
convenient and the most commercially scalable of the two methods of SLR
systems. The vision-based approach like the data gloves approach has had a lot of
research done using different machine learning and deep learning techniques.
Convolutional neural network (CNN) is used extensively in vision-based approaches
because of its dominance in computer vision. CNN is well suited to work on grid
like data which is what images are. CNN also has an automatic feature extraction
which implies that sometimes little work is done to extract the features from the
images before they are being fed into the CNN model.

(KASAPBAŞI, A. et al., 2022) developed an SLR system for ASL and achieved an
accuracy of 99.38% with a 0.0250 loss. Like (KATOCH, S., V. SINGH and U.S.

16 | P a g e

TIWARY, 2022) and most vision-based approaches, image segmentation and
sometimes background subtraction accompanied by specifying a region of interest
(ROI) where the signs must be done before any classification can take place is a
common practice when building vision based SLR systems. The study also involved
training the CNN model using black and white images and preprocessing the signs
to black and white during real time testing.

(KATOCH, S., V. SINGH and U.S. TIWARY, 2022) used several preprocessing steps
like skin segmentation, gaussian filtering, SURF feature extraction and clustering
to generate the data used in the ISL recognition system. The CNN model in this
study performed marginally better than the SVM and achieved an accuracy of
99.64% on test data. The real time test was done in an environmental setting that
gives contrast to the hands and therefore designed to maximize the accuracy
rather than using the same method used to generate the data for the study.

(N. BUCKLEY, L. SHERRETT and E. LINDO SECCO, 2021) developed a BSL
recognition system on 19 static gestures. The system is powered by a CNN model
and performed the typical pre-processing steps including image binarization.

Using a combination of AlexNet which is a version of CNN, and LSTM (W. SULIMAN
et al., 2021) achieved an accuracy of 95.9% although it was signer dependent. The
proposed system developed for Arabic sign language (ARSL) involved using AlexNet
for feature extraction and LSTM for classification. The system in the pre-processing
step used skin detection and face detection for image segmentation, further image
processing was carried out using morphological operations to remove small regions,
finally the two largest regions which are the hands were extracted and used to
form the dataset. The problem with such an approach the user needs to always
show the bare arms for the process to work which will not be the case most times

(M. QUINN and J. I. OLSZEWSKA, 2019) developed a BSL recognition system
powered by SVM but used a different approach in the pre-processing step that
involved downscaling then using several computer vision morphological operations
such eroding and dilation combined with histogram of oriented gradients before
performing feature extraction and finally upscaling to produce a HOG image. The
study showed good performance regardless of the environment on random gestures
and did not give any results on the real time tests using BSL signs.

Developing SLR systems using CNN requires lots of pre-processing and is easily
affected by environmental factors coupled with the fact that CNN requires a lot of
data to train that is why most researchers using this method specify a region of
interest to reduce the number of features per image which helps the model train
faster. CNN is not as fast as other neural networks like LSTM so using such a model
in real time prediction might be a hassle coupled with the fact that the average
signing rate is 2.3-2.5 signs per second (JEAN, B.G., 1979). Additionally, this
approach is not suitable for everyday life as so many environmental factors can
easily affect the useability of such systems. Another approach adopted in recent
years is the use of mediapipe. Most of the hand detection is already done by the
framework so researchers can focus on building the AI systems that take advantage

17 | P a g e

of the mediapipe framework. Mediapipe also come with several other advantages
that make it suitable for real time prediction as will be discussed in later chapters.

2.1.4 Mediapipe method review

(M. MARAIS et al., 2022) performed Argentine sign language recognition using hand
landmarks extracted with mediapipe holistic model which was then used to train a
1D-CNN model used in classifying the signs. Also, another method involving the
segmentation of hands from the entire image was done using image thresholding
with the researchers wearing fluorescent gloves and final images fed to the Pruned
VGG and ResNet models. Finally, raw images were fed to a Pruned VGG and ResNet
models for training. The 1D-CNN plus mediapipe combination got an accuracy of
94.91% on test data, method 2 got accuracies of 47.83% and 43.24% on ResNet and
Pruned VGG model respectively. Method 3 got an accuracy of 95.40% on the
Prunned VGG model slightly edging out the ResNet model. The final 1D-CNN model
was not tested in real time to check for real world accuracy and the study was not
very detailed.

(D. BISHT et al., 2022) uses a web interface that hosts an American sign language
recognition system powered by a random forest classifier which achieved an
accuracy of 94.69%. The study also implemented many features like speech to
text, text to speech and autocorrect but the method used to predict in real time
makes it difficult to commercially scale and improve as real time prediction is
more of action recognition rather than static sign language recognition.

(V. H. IYER et al., 2022.) implemented a system trained to recognize 3 classes
using mediapipe for face, pose and hand landmarks extraction and trained an LSTM
model, the study achieved an accuracy of 87.5% for the 3 labels which is not
adequate compared to other studies like (M. MARAIS et al., 2022),(M. H. ISMAIL, S.
A. DAWWD and F. H. ALI, 2021.) and (D. BISHT et al., 2022) which achieved higher
accuracy on full datasets.

(M. H. ISMAIL, S. A. DAWWD and F. H. ALI, 2021) developed an SLR system
classifying signs into static, dynamic and non-sign. The data comprised of 7500
videos with mediapipe used to extracts the pose, and hand landmarks. A Bi-GRU
was then trained and achieved an accuracy of 99.05%.

(A. CHAIKAEW, K. SOMKUAN and T. YUYEN, 2021.) developed a system for Thai sign
language recognition system for both desktop and smartphone picking 5 labels with
100 videos per label. The LSTM model used in this study achieved an accuracy of
97% on test data.

(S. ADHIKARY, A. K. TALUKDAR) developed a system recognizing 11 ISL gestures
using mediapipe in combination with different models to perform SLR but failed to
detail the clear method used to achieve the results. Also the work was not done on
the full ISL dataset.

18 | P a g e

A hybrid method can be used to build, the wearables for collecting data and
building the numeric dataset to ensure the accuracy of the data being collected
while a vision-based approach using mediapipe holistic model can be used to
extract the position of the hands from a live feed camera during data real-time
testing.

19 | P a g e

Study Method Models
implemented

Accuracy

 %

Real time
Prediction

Background
Dependency

User
Interface

Comments

M. MARAIS

et al.,
2022

Worked on the LSA64 dataset and

experimented with 3 different
methods with the raw image
processing having the highest
accuracy on test data

1D-CNN

ResNet

Pruned VGG

94.91

95.40

94.50

 No Yes No The study explored different methods for SLR

but was not very detailed.

D. BISHT
et al.,

2022

Trained different models on ASL
dataset and few ISL alphabets using

mediapipe to extract the hand
features

RandomForestClassifier

Naive Bayes Classifier

Logistic regression

KNN

SVC

LwP

94.58

79.74

89.95

89.15

90.91

58.45

yes no yes A good study overall but the real time
prediction using each frame rather than a

combination of frames for the sign recognition
is not suitable for commercial scaling and
can’t be used for action recognition which is
what real time sign language prediction is
geared towards.

V. H. IYER
et al.,

2022.

Trained an LSTM model on 3 labels
using mediapipe to extract features

LSTM 87.5 yes no yes Poor accuracy on few labels, Face datapoints
not needed to perform the described

prediction

M. H.
ISMAIL, S.
A. DAWWD
and F. H.

ALI, 2021.

Implemented a system that
recognizes Arabic sign language into
static, dynamic and non-sign powered
by a Bi-GRU model classifying the
signs from video frames

Bi-GRU 99.05 no yes no did not test the model in real time to confirm
the accuracy

A.
CHAIKAEW,
K.
SOMKUAN

and T.
YUYEN,
2021.

Designed a SLR system for Thai sign
language

LSTM

Bi-LSTM

GRU

97

94

94

no yes no No real time testing was done to validate the
accuracy of the models

S.
ADHIKARY,
A. K.
TALUKDAR

Implemented a system on ISL
recognition with 11 gestures

Decision Tree Classifier

Randomforestclassifier

Gradient boosting
classifier

83.8

97.4

95.7

yes no yes Methodology on the data preprocessing and
model training is unclear. The number of
images per class wan not defined. Therefore,
interpreting the type of confusion matrix

presented without the number per class is not
possible.

20 | P a g e

Chapter 3 Methodology

3.1 Chapter Overview

All libraries, algorithms and tools used in the building of the artefact are discussed in this
chapter. The chapter begins with the proposed method for this study then proceeds to
talk about the dataset and where it was gotten from followed by the discussion of
libraries and tools

3.2 Proposed Method

Before this proposed method was reached 2 other methods were tried. A total of 260
images was collected for the 26 classes of the BSL dataset for both right and left hands
from a secondary signer with each class having 10 images each, 8 for training and 2 for
testing. The first method involved creating a directory structure having train and test
folders as required by CNN. The created folders will have a folder for each of the
alphabets with 8 images of each alphabet going to their respective sub folders in the
train folder and the remaining 2 goes to their associated sub folders in the test folder.
During training it became very clear a lot more images was needed to be generated to
achieve any real accuracy as the validation accuracy did not get passed 6% because the
pilot study conducted showed one of the major drawbacks of CNN is the amount of data it
needs to train. Given the time constraints and potential challenges that comes with
generating a robust data for such a project another approach was needed.

The next approach also used images collected in the first step but this time with a
pretrained mobilenet SSD model in combination with TensorFlow object detection. All
the image files with their associated xml files were split into training and test files and
placed in the train and test folders with no sub folders for the alphabets needed like in
the first method. In this approach a form of directed learning was done using image
labelling. The images were labelled using an application called labelImg which generates
an xml file for the image being labelled. The signs in the image were selected and the
associated English alphabet was used to label the image. After testing the first time there
was no real accuracy observed during real time test. After generating the TensorFlow
record and changing the configuration file the model still did not learn. Given the time
constraint the method using mediapipe needed to be explored.

This method uses the OpenCV library to access the web camera which takes images and
passes these images frame by frame to the google mediapipe holistic model for pose, left
and right-hand landmarks detection which are then extracted into a NumPy array and
stored using the npy extension. These NumPy files are then loaded and preprocessed
before been passed to the models for training. The models are then evaluated using
accuracy, precision, F1 score and recall. The selected models are then deployed using the
h5 format and a webapp using Streamlit is built to perform real time BSL recognition
testing.

21 | P a g e

Figure 4: Block diagram of intended model

3.2.1 Dataset

The base line in which the data was generated was gotten from the university college
London (UCL). It has the alphabets A-Z. The signs in this dataset were followed when
generating the data needed to train the models. A function was utilized in the data
collection process, each frame is read from the webcam then passed to the mediapipe
holistic model for landmark extraction. Each alphabet had 60 folders with each folder
having 30 files with the npy extension representing the extracted landmarks of each
frame from 1-30, as 30 frames per second was used. It was ensured that the extracted
key points covered just the arm pose landmark excluding other body landmarks, left and
right landmarks. The data generated from this process was for left hand only. The 26
alphabets were used for the final model. finally, signs were generated for the “.” and
empty space character.

Figure 5:sample of dataset

22 | P a g e

3.2.2 OpenCV

Computer vision has it challenges and solving those challenges will bring about
possibilities in self driving, engineering, entertainment, and other areas. Intel in 1999
officially launched OpenCV (open-source computer vision library) (I. CULJAK et al., 2012)
which is used mainly for image processing (NAVEENKUMAR, M. and A. VADIVEL, 2015.).
OpenCV is built using C++ which makes it portable and highly optimized. OpenCV has lots
of functions and algorithms used for edge detection, object tracking and face detection.
For this work OpenCV will be used to access the webcam and read the frame-by-frame
images used for further processing in both the data collection and testing phase.

3.2.3 Mediapipe

Mediapipe is an open-source, cross-platform, machine learning framework developed by
google which is specifically used to build pipelines which is then used to perform
inference over sensory data (LUGARESI, C. et al., 2019.) Using mediapipe developers can
balance usage resources, run operations in parallel and properly synchronize time series
data such as audio and video frames. Mediapipe can optimize the detection process by
synchronizing the GPU and CPU performance. Using Mediapipe, a perception pipeline can
be built as a graph of components which might include media processing functions and
trained models used for inference. Sensory data passes through the graph and object
detection results and landmark annotations leave the graph.

Figure 6: Object detection using mediapipe (LUGARESI, C. et al., 2019.)

Mediapipe was written in C++ which makes it light and fast as C++ is compiled to machine
code which does not need an interpreter to run in real time. This also means that

23 | P a g e

Mediapipe is truly cross platform and can be easily deployed to any platform, Android,
Windows or MacOS. Using graphs, subgraphs, calculators, developers can tweak
parameters of each calculator to fit different projects which makes it modular and
reusable.

Mediapipe performs the 3D tracking of hand and postures using landmarks. The hand
landmarks consist of 21 landmarks for each hand while the pose has 33 landmarks. Each
hand is connected through a line passing through the shoulders. Using this approach to
determine the position of fingers and postures makes mediapipe very effective in building
sign language recognition systems. Using the variable detection confidence and tracking
confidence parameters within the mediapipe holistic model the model can be tuned to
ensure the percentage sureness of the hand detection. Mediapipe is easy to set up and
use so the time of developers can be better spent focusing on building the models.

Figure 7: mediapipe key points of hands

The figure above shows the media pipe labelled key points for the hand.

Figure 8: figure showing the mediapipe hand detection and posture keypoints

24 | P a g e

3.2.4 LSTM

LSTM (Long Short-Term Memory) is a sequential deep neural network model that was built
as a replacement to deep recurrent neural network (RNN) models which had a vanishing
gradient problem. LSTM was first proposed in 1997 by Sepp Horeiter and Jurgen
Schmidhuber and has had iterations over the years. LSTM is very good at predicting time
series data and have gotten a lot of attention over the years by researchers. It is used a
lot in speech recognition, music composition, handwriting recognition, time series
anomaly recognition, stock forecasting and so on. Like most neural network information
in LSTM is passed through layer. LSTM uses the concept of gates in its architecture which
have different uses.

Figure 9: LSTM Cell (T, R., 2020.)

There are 3 gates and their functions are:

Forget gate: This gate within the LSTM cells manages the forgetting of information
encoded into the previous state that was passed into the current cell.

Input gate: manages what information from the input in the current time step and the
previous hidden state will be encoded into the new cell state.

Output gate: Controls the information from the previous hidden state and input in the
current time step that will be encoded into the next hidden state in the next time step.

25 | P a g e

3.2.5 GRU

The gated recurrent unit (GRU) is a variation of LSTM introduced by Junyoung Chung,
Caglar Gulcehre, KyungHyun Cho and Yoshua Bengio in 2014. It was also created to solve
the vanishing gradient problem that plagued deep recurrent neural networks, but it does
it with less parameters than LSTM in the unit cells. It achieves this feat by using 2 gates
instead of 3 gates like in LSTM. GRU is used in every area LSTM is used.

Figure 10: GRU cell (KHANDELWAL, R., 2019.)

There are 2 gates, and their functions are:

Reset Gate: The function of this gate is to determine how much information from
previous time steps in the current time step should be forgotten.

Update Gate: the update determines how much information from the previous time steps
is to be retained and what information from the input in the current time step will be
encoded into the current hidden state that will be passed into the next time step.

3.2.6 Random Forest Classifier

According to IBM random forest is a popular machine learning algorithm trademarked by
Adele Cutler and Leo Breiman. It combines the output of multiple decision trees to form
a single result. Random forest can be used for both classification and regression
problems. It has become popular among researchers because of its flexibility and ease of
use. The algorithm used in the random forest which is the random forest algorithm
extends the bagging method as it uses both bagging and feature randomness to create
trees that are uncorrelated.

26 | P a g e

Figure 11: Random Forest Classifier diagram(IBM)

Each tree in the ensemble is made up of data taken from the training sample and 1/3 of
the data is set aside to validate the model and it is called out-of-bag data. Random forest
has several benefits as well as drawbacks. The randomness in which the training data
shuffled prevents overfitting. Random forest is easy to use because it can handle both
regression and classification tasks, lastly it can atomically determine features that are
important to the prediction. Random forest has a few challenges, one is that it can be
time consuming to train and computationally expensive, require more resources to store
data and can be complex. Random forest is used in a lot of industries like finance, health
care and e-commerce.

3.2.7 Streamlit

According to the Streamlit official website, Streamlit is an open source, light weight,
multi-platform dashboarding framework adapted to python and used in building webapps.
Streamlit was founded in 2018 by Adrien Treuille and Thiago Teixeria. It is primarily used
in creating dashboard and building webapps with python. In terms of support Streamlit
supports major libraries like TensorFlow, matplotlib, OpenCV, seaborn, pandas and
NumPy to name a few according to the streamlit website. Streamlit is easy to use
because it is integrated with python, supports a lot of the major libraries, easy to install
and has python friendly syntax. With streamlit the development is fast and easy and
source code can be changed and updated while the server is running making rapid
development and testing possible, although this is a good thing it can hamper the speed
as the entire code needs to be re-run each time the source code is updated especially
when computationally intensive routines are within the sources code. Also, streamlit
does not have a lot of widgets or design components like other well-established
frameworks like Django.

3.2.7 1D convolutional neural network

Convolutional neural networks (CNN) are the neural networks that was built to process
data in a matrix or grid form that is why they have become the de-facto neural networks
used in computer vision. They are feed forward neural networks with sub sampling layers
and convolutional layers that alternates. Three dimensional and two dimensional

27 | P a g e

convolutional neural networks have been great in dealing with data in 3D and 2D forms
such as images and videos frames. The 3D and 2D CNN lose their viability when the data is
one dimensional. CNN can achieve very high accuracy, but it requires large data to train
as small or medium size databases were insufficient. Also, the training of a deep CNN
model can be computationally expensive. 1D CNN has less computational complexities
than 2D or 3D CNN (KIRANYAZ, S. et al., 2021) because it requires less parameters to
train. This makes the requirement of using dedicated hardware to train deep neural
networks less needed. Also, it makes 1D CNN well suited for real-time, low-cost
prediction. CNN great because they combine feature extraction and classification which
has fuelled their widespread use. 1D CNN is preferred over other forms of CNN when real
time prediction is needed, these include areas like speech recognition, real-time
electrocardiogram monitoring vibration based structural damage detection, rotating
machinery and so forth. All these factors make CNN a suitable model for sign language
recognition where images are not passed through the model like this work proposes.

28 | P a g e

Chapter 4

4.1 Chapter overview

This chapter focus on the explanation of all the processes done during the development
process, which includes but not limited to routines developed for the dataset generation,
pre-processing, use of OpenCV, GUI and model evaluation. Code snippets are extracted
from the main body of code and discussed in non-technical terms as much as possible
except when it is necessary to justify the approach.

4.2 Implementation

To reduce a lot of code duplication a class was created to house the frequently used
functions and variables. The class was named Braimah while the instance of the Braimah
class was named vision_class. The instance of the mediapipe holistic model, mediapipe
drawing model, number of sequence frame length, data path for the folders the system is
going to operate from, the threshold and alphabets were all housed in the Braimah class
as shown in the figure below.

Figure 12:code snippet showing the housed Braimah class variables

4.2.1 input

The input in the proposed method is the picture frame gotten from the webcam. OpenCV
is used to access the webcam and leave the channel open. The webcam used can read up
to 60 frames per second but just 30 frames per second was used in this case.

29 | P a g e

Figure 13:OpenCV function to read images from camera

OpenCV is used to start the video capture and read the images frame by frame. OpenCV
displays images in the RGB (Red Green Blue) format. Since the resulting frame is a
product of mediapipe holistic model landmark detection, which processes images in the
BGR (Blue Green Red) format, the conversion back to RGB is necessary for the image is to
be displayed properly since RGB is the natural format in which humans see colours.

4.2.2 Detect key points using mediapipe

After the frame is collected from the webcam it undergoes two processes with the latter
transforming the frame to include the visual displays of the key points and their
connecting lines, before it is showed to the user. The first transformation involves passing
the frame through the mediapipe holistic model to detect the key points in the frame.

Figure 14: mediapipe holistic key point detection code snippet

A function called mediapipe_detection was created within the vision_class to perform the
operation. The holistic model and the frame are passed into the function. First a colour
conversion is done because mediapipe uses the BGR colour format on the frame passed
into the function. Secondly, the writeable property of the frame is set to false to ensure
the frame is not altered as it passes through the mediapipe holistic model. After
processing the writeable flags of the frame are then set back to True and returned along
with the results of the detection.

4.2.3 Drawing of landmarks

A function called draw_styled_landmarks was created to perform the operation of
drawing the key points and connecting lines to the frame.

30 | P a g e

Figure 15: code snippet to draw the landmarks

As seen from the figure above the frame and the results from the mediapipe landmark
detection function are passed into this function. Since the writeable flag of the frame is
already set to true the mediapipe draw_landmarks function can write to the image
transforming the image. Only the pose, left and right-hand landmarks are drawn to the
image. Within the mediapipe draw_landmarks function the colour, thickness, circle radius
can be modified to any preference. The drawing of the landmarks to the frame helps with
not only understanding how mediapipe works but also helps in the data collection process
because the hands can be positioned properly in real time when signing to make sure the
data extracted is correct.

4.2.4 Dataset generation

Figure 16:code for dataset generation

31 | P a g e

Several loops were used, the first is for the number of alphabets to be collected, second
for the number of sequences which is 60 in this case, last for the number of frames per
sequence, each used to control the number of times the data collection process will run
for the alphabet, sequence, and number of frames respectively. A collection was also
used to restrict the number of alphabets that can be collected at a time to reduce the
strain of the data collection process. The Braimah class function extract_datapoints was
used to extract the landmarks for pose, left and right hands and concatenate them into a
single NumPy array. The class function save_keypoints was implemented to write the
extracted NumPy arrays to their corresponding frame number under the current sequence
number of the sequence for loop. To make it clear during the data generation phase text
showing the alphabet the data is being collected for and the corresponding number in the
sequence is displayed using method OpenCV putText() is utilized. Persisting the storage
of the dataset has several benefits aside the obvious storage for later use, another
important reason is during model evaluation phase after evaluating the False negatives of
the alphabets it is easy to regenerate the data of the alphabets with a lot of False
negatives without having to regenerate the data for all alphabets

4.2.5 Extract datapoints

This step is a very important step as it is responsible extracting the pose, left and right-
hand landmarks and converting them to a NumPy array which is used to trin the model.

Figure 17: code snippet for mediapipe key point extraction

The result from the mediapipe detection model is passed into this function with the
variable name frame_results. The pose landmarks unlike the left and right-hand
landmarks have 4 variables x, y, z and visibility property. The mediapipe pose landmark
has 33 key points, the multiplication of these 4 variables with these key points makes 132
as seen in the figure above. The flatten property is used to convert the 2D array to 1D
array. The if else is used to check if the landmark is captured if not zeros are generated
in the place of the data. This is necessary during training because whatever key points
captured by the mediapipe holistic model can be inputted in the spaces the zeros occupy.
The same process is done for the landmarks of both hands. In total each hand landmark
has 21 key points as earlier stated and those 21 key points are multiplied by the x, y, z
variables of each key point to make 63 points which is then multiplied by 2 to give 126.
After concatenation of all landmarks into a single array it totals at 258. Each frame will
have a NumPy array with 258 values. The resulting NumPy array is then returned.

32 | P a g e

4.2.6 Create folders

To store the data generated from the video frames during the data collection process a
file system needed to be created. A folder was created for each Alphabet and each
alphabet had several folders according to the number of sequences. Each sequence has
30 NumPy files named 0 – 29 with each file representing the 30 frames captured for that
sequence

Figure 18: code snippet for creating folders

The figure above shows how the folders were created. The python os library in
combination with for loops were used in the creation of the folders.

 4.1.7 save key points

The function named save_keypoints was created to save the extracted NumPy files from
their corresponding video frames to the dataset directories. Due to the frequency of use
the @staticmethod keyword was used to mark the function which makes the function
class independent and saves it to the Random Access Memory (RAM) rather than the heap
memory of the computer for faster access.

Figure 19:code snippet for the save_keypoints function

The data path, alphabet, sequence number, frame number and the NumPy array
developed from the extract_keypoints were passed into the function. Again the python
library OS with its path.join function was used to generate a path that generated path is
then passed to the NumPy.save function together with the key points array, the function
writes the key points to the directory path.

4.2.8 Data pre-processing

After the data for all the alphabets had been generated and saved to their corresponding
files in the dataset directories, they needed to be loaded back into memory and arranged

33 | P a g e

in a structured format before they could be used for training. The figures below show the
routines created to perform this task.

Figure 20: code snippet for alphabet dictionary creation

The figure above shows the creation of a dictionary named label_map which uses the
selected alphabets as keys and their respective positions in the selected_actions list as
values.

Figure 21: code snippet or loading files

The sequences and labels list created was used to store the data read from the dataset
directories. 3 for loops were implemented, the first to loop through the list of the
selected alphabets, the second for looping through the length of the sequences while the
last from frame length. The same process used for storing was also used reading back into
memory. The NumPy library with the NumPy.Load function was used to load the files
corresponding to the 30 frames for the 60 sequences of their respective alphabets. The
result of the loaded NumPy file is assigned to variable res and then appended to the list
labelled window which is then appended the list variable called sequences. At the end of
the second for loop the integer value of the corresponding action from the label
dictionary is also appended to a separate list named labels which is used to create the y
training data.

The next step in the data pre-processing was to convert the list named sequences which
contains all the data into a NumPy array as shown in the figure below. The shape of the
new array was also checked.

Figure 22: code snippet for X values creation

The X data had 1260 records which is 60 sequences by 20 alphabets plus the “.” Label
making 21 labels. Each record has 30 arrays and each of those 30 has 258 numbers.

34 | P a g e

To create the y data the list named labels was used to generate an array of categorical
data of ones and zeros. This is necessary not to create bias during the training process as
integers can be interpreted as having an ordered significance. In this case it also suitable
because the predictions returned by the neural networks are probability distributions
enabled by the SoftMax activation function in the last dense layer of the neural network’s
configuration.

Figure 23: code snippet for Y data creation

This was done with the help of the to_categorical functions from the keras.utils library.

The next step was to split the data into training and test data. This was implemented
using the train_test_split function from the sklearn.model_selction library.

Figure 24: code snippet for dataset splitting

The dataset was split with 90% for training and 10% for test data this is done because
another 10% of the training data was also used for validation accuracy during training
making a total of 19% of the data used for testing.

4.2.9 model building and training

Several models were trained using the generated data to see which one has the best
performance in terms of accuracy in real time. These models included LSTM, GRU,
1DConvo from the Keras library and random forest classifier from the scikit-learn library

35 | P a g e

4.2.10 GRU

Figure 25: GRU Model instantiation

After several iterations of the layers the current configuration in the figure above was
used which struck a balance between model complexity and speed. This was needed to
make the GRU capable of coping with real time prediction and to make sure the neural
network does not become too deep because the activation function used in the LSTM
outputs a value between 0 and 1 which means the model can stop learning if too deep
which can lead to vanishing gradient. The figure above also shows the format in which
the GRU model was built. The sequential model had 3 GRU model layers and 3 dense
layers. The first and third layers had 200 units while the second layer had 400. The
preceding layers are made up of dense layers with the first having 125 units, the second
having 64 units while the last dense layer has a number according to the number of
categories to be classified. The activation functions used for the GRU layers was tanh
because tanh can take advantage of the presence of the Nvidia GPU CUDA cores present
in the system used for training which reduces the time needed for training by over 80-90
percent. The dense layers except the third one uses a Rectified linear unit (ReLU)
activation function which outputs a value between -1 and 1. It is less computationally
intensive than tanh and all the drawbacks of the vanishing gradient problem in deep
neural network is completely removed. The last layer uses a Softmax activation function
which converts a vector of numbers into a probability distribution which means the
certainty in which a model classifies a label can be checked in real time. During training
in deep learning the network parameters like weights and learning rate needs to be
modified to minimize the loss function therefore an optimization function is needed to
make this happen. The adam optimizer is used because it requires less computational
time and less parameter to tune, it also gives a good probability of getting the best
results. The loss function categorical cross entropy is used because of the multiple classes
present in the data. The metric used to evaluate the model is categorical accuracy. To
make sure the model did not overfit a 20% dropout was introduced in each GRU layer and
a 10% dropout was introduced in the dense layers. This randomly freezes the specified
percentage of nodes in the layers.

36 | P a g e

4.2.11 LSTM

For the LSTM model when set with the same configuration with the GRU model failed to
learn during training so a less shallow configuration was used but it still gave a good
performance.

The first 2 layers of the sequential model are LSTM layers with 150 units each. A dropout
rate of 10% was used because of the small number of units used in the layers. The next 3
layers are dense layers with the first dense layer having 100 units, the second with 62
units while the last has the same number of units as the labels to be classified. All other
configurations for the dense layer are the same with the configuration in the GRU model.

The LSTM had lower training parameters than the GRU because of the lower number units
per layer

4.2.12 CONV1D

Figure 26: code snippet for CONV1D build

The 1D CNN when built with similar configuration to the LSTM and GRU performed very
poorly in the real time test. 2 layers of the 1D CNN followed by a dropout layer is used.
The 2 layers are then flattened after a pool_size of 2 is added. The pool layer added is
responsible for down sampling the features in the data because the model is very
sensitive to the positions of the features.

37 | P a g e

4.2.13 Graphical user interface

The graphical user interface is a simple interface built using the streamlit frame it
consists

Figure 27: code snippets for loading models into the GUI environment

The mediapipe holistic model is loaded into memory and the threshold for prediction is
set. The specified actions to be predicted are also created. The page configuration for
streamlit is instantiated with its title and layout. All models for both pose and non-pose
are loaded into memory using the Keras library.

4.2.13.1 Description

Figure 28: Gui description

38 | P a g e

1. The side bar has 2 options select model and select pose positions so the user can
pick whatever combinations of the 2 configurations to use.

2. The area with the picture shows the frame in real time and it is the region in
which all BSL signs will be performed.

3. The area just below the image is where the recognized signs will be outputted and
where sentence formation will occur

4.2.13.2 Detection

 A different approach was taken with the detection using the GUI because it had to
accommodate multiple models for the real time pose and non-pose BSL recognition
detection.

Figure 29: detection logic for pose and non-pose

If and else approach is used to determine the right model to use and if the pose or non-
pose method had been selected by the user. The prediction is then checked to see if it

39 | P a g e

reaches the specified threshold if it does it is appended to the sentence list passed into
the function. If the prediction is “dot” or “space” the characters “.” and empty space
are appended to the sentence list respectively.

4.2.13.3 Program flow

The figure below shows the how the program flow takes place and how the components
within the GUI were initialized and used.

Figure 30: code snippet for program flow

40 | P a g e

In the main function of the python script hosing the GUI code OpenCV is used to start the
capturing of the video and each frame is passed into mediapipe holistic model so
landmark detection can be made. The result is then used to check if hands are in the
frame. If no hands are in the frame the list used to house the frames that will used for
prediction is cleared and the count variable returned to zero. There are two benefits to
this, one is the data passed into the model for prediction will be a sign that has been
formed by the user and not something random. Secondly, it helps with the jittering
because if a sign jitters to the point where no hand is detected it starts the data
collection process all over again which ensures the right data has been passed to the
model increasing the chances of having the right prediction. After the detection process
is done, the frame is then used to update the image property of the Streamlit image class
that was instantiated. If there is no heavy interruption to the point where the hands
aren’t detected in the signing process the frames are constantly processed and the count
property updated until the number reaches 30 where it will be passed into the detection
function. The detection function returns the prediction and if the prediction is the full
stop character. The Sentence collection is popped, and the list is then converted to a
string and passed to the instance of the pyttsx3 library used for text to speech
translation. The sentence list is then cleared along with the output text so the process
can start all over again. Since the program was built in a way where the detection can
use both pose or just the right- and left-hand landmarks the pose_choice property is
passed to all the functions that are used in the process.

4.2.14 Model evaluation

The LSTM and GRU models can both be used for classification and regression but in this
case, they were used for classification therefore they were evaluated using classification
evaluation methods. A simple but effective approach is using the classification report
which includes accuracy, precision, recall, F1 score and support.

Figure 31: code snippet for classification report

The function multiple_confusion_matrix was used to display the confusion matrix of each
label.

Figure 32: code snippet for multiple confusion matrix

The accuracy was calculated using the accuracy_score library from the sklearn.metrics
library.

Figure 33: code snippet for accuracy score

Having the confusion matrix output in the format shown in the figure below might seem
hard to read so the seaborn library was used to plot the multiple confusion matrix for the
individual classes.

41 | P a g e

Figure 34:code snippet to print multiple confusion matrix

The function above was used to generate the heatmap using the seaborn library after the
multiple confusion matrix was converted to a Pandas data frame with the alphabets as
index and class names. The title with y and x labels were then set accordingly.

42 | P a g e

Chapter 5

5.1 Chapter overview

This chapter has 3 tables showing results. The first table shows the models and their respective
accuracy on both test data and in real time testing using pose and hand landmarks for prediction.
The Second Table like first table shows the accuracy data but without the use of pose landmarks.
The third table shows the optimal result from this work in comparison with previous works using
mediapipe indicating if real testing was done or not. The tables are followed by training
visualizations and classification reports screen shots for the 6 models with each model in their own
subheading. The confusion matrix plots was not added to this section but rather to the section B of
the appendix section because of their very large sizes.

5.2 Result

Two methods were used to develop the models so there are total of 6 models. 3 using
pose estimation and 3 without. The results are grouped accordingly and a table
comparing result of this work to other related works using mediapipe is also done.

Model Accuracy % Real time Accuracy %

LSTM 97.6 67.8

GRU 99.3 82.1

CONV1D 98.2 67.8
Figure 35: Result using pose estimation

The table above shows results for the models when pose landmarks in combination with
the left- and right-hand landmarks were used for training. LSTM having an accuracy on
97.6% on test data and 67.8% in real time testing. GRU has 99.3% on test data and 82.1%
in real time testing.

Model Accuracy % Real time Accuracy %

LSTM 98.8 82.1

GRU 99.4 85.7

CONV1D 97.2 75
Figure 36: Result without pose estimation

The table above shows the results reached by the model when just left- and right-hand
landmarks were used for training. LSTM with had an accuracy of 98.8% on the test data
and 82.1% in real time testing. GRU reached an accuracy of 99.4 on the test data and a
real time accuracy of 85.7% While the CONV1D had a 97.2% accuracy on test data and a
real time of 78.5%.

Study Real time
testing

language Accuracy %

D. BISHT et al.,
2022

yes ASL and few
ISL words

94.58(real time)

V. H. IYER et
al., 2022.

yes N/A 87.5

43 | P a g e

M. H. ISMAIL, S.
A. DAWWD and
F. H. ALI, 2021.

no ARSL 99.03

A. CHAIKAEW,
K. SOMKUAN
and T. YUYEN,
2021.

no Thai sign
language

97

S. ADHIKARY, A.
K. TALUKDAR

yes ISL 97.4

This work yes BSL 92.6(real time)

Figure 37: Results of comparative studies

The table above itemizes the performance of the different models used by different
researchers using the media pipe holistic model to extract the data used for
classification.

5.3 Results for the Model Evaluation

5.3.1 GRU

Figure 38: GRU pose loss plot

The figure above shows the GRU loss versus validation loss plot for the pose in
combination with the hand landmark training.

44 | P a g e

Figure 39: GRU pose classification report

The figure above shows the classification report for the GRU model using both pose and
hand landmarks for detection

Figure 40: GRU no pose classification report

The figure above shows the classification report for the GRU model using just hand landmarks for
the detection process.

45 | P a g e

5.3.2 LSTM

Figure 41: LSTM pose loss plot

The figure above shows the loss versus validation loss training graph for the LSTM model
using both pose and hand landmarks for detection.

Figure 42:LSTM pose classification report

The figure above shows the classification report for the LSTM model using both pose and
hand landmarks for detection.

46 | P a g e

Figure 43: LSTM loss plot no pose

The figure above shows the loss versus validation loss training graph for the LSTM model
using just hand landmarks for detection.

Figure 44: LSTM no pose classification report

The figure above shows the classification report for the LSTM model using just hand
landmarks for detection.

47 | P a g e

Figure 45: LSTM validation loss vs validation accuracy graph

The figure above shows the validation loss versus validation accuracy for the LSTM model
using just hand landmarks for detection.

5.3.3 CONV1D

Figure 46: CONV1D loss plot no pose

The training plot of CONV1D with using just the hand landmarks for detection

48 | P a g e

Figure 47: classification report for CONV1D using the hand landmarks

The figure above shows the classification report for the CONV1D model using just the
hand landmarks for detection.

Figure 48: Training plot for CONV1D using pose

The figure above shows the training plot for the CONV1D using pose and hand landmarks
for detection.

49 | P a g e

Figure 49: validation loss versus validation accuracy for CONV1D

The figure above shows the plot for validation loss versus validation accuracy for CONV1D
using pose and hand landmarks for detection.

Figure 50:classification report for CONV1D using pose and hand landmarks for prediction

50 | P a g e

Table 1: Real time label recognition Table

Labels GRU
+
Pose

GRU
+ No
Pose

LSTM
+
Pose

LSTM
+ No
Pose

CONV1D
+ Pose

CONV1D
+ No
Pose

Average
likelihood
of model
detection
%

A Yes Yes Yes Yes Yes Yes 100
B Yes Yes Yes Yes Yes Yes 100

C Yes Yes Yes Yes Yes Yes 100

D Yes Yes Yes Yes Yes Yes 100

E Yes Yes Yes Yes Yes Yes 100
F Yes Yes Yes Yes Yes Yes 100

G Yes Yes No Yes Yes Yes 83.5

H No Yes No Yes No Yes 50.1

I No Yes No Yes No No 33.4

J Yes No Yes No No No 33.4

K Yes Yes No Yes Yes Yes 83.5

L Yes Yes Yes Yes Yes Yes 100

M No Yes No No No Yes 16.7
N No Yes No No No No 16.7

O Yes Yes No No No Yes 50.1
P Yes Yes No Yes No Yes 66.8

Q Yes Yes Yes Yes Yes Yes 100

R Yes Yes Yes Yes Yes Yes 100
S Yes Yes Yes Yes Yes Yes 100

T Yes Yes Yes Yes Yes Yes 100

U Yes Yes Yes Yes Yes Yes 100

V Yes No No Yes Yes No 50.1

W No Yes Yes Yes Yes Yes 83.5
X Yes No Yes No No Yes 50.1

Y Yes Yes Yes Yes Yes No 83.5

Z Yes No Yes Yes Yes No 66.8

. Yes Yes Yes Yes No No 66.8

space Yes Yes Yes Yes Yes Yes 100

Total
= 28

23 24 19 23 19 21

5.4 Discussion

The results from sub section 5.1 shows that GRU performed the best in real time testing
achieving an accuracy of 85.7% when only the hand landmarks were used for detection.
The real time detection with pose was not far behind with 82.1%.

(M. H. ISMAIL, S. A. DAWWD and F. H. ALI, 2021.) achieved a 99.03% on the ARSL dataset
but did not test in real time. Given the challenges with mediapipe jittering it will be

R
eal Tim

e A
lp

h
ab

et R
eco

gn
itio

n
 (Yes/N

o
)

51 | P a g e

beneficial to see some real time test with the generated data and not just on test data.
This study achieved a maximum accuracy of 99.3% with the GRU on test data using pose
in combination with the hand landmarks but had a real time accuracy of 82.1%.

(D. BISHT et al., 2022) achieved the best result using two hands in real time test, but this
was for just 6 gestures introduced into the study from ISL and not on a full two-hand sign
language dataset like the one used in this study. The study also implemented some
important features like speech to text and text to speech with the auto correct feature
for words which is vital to commercial useability.

(A. CHAIKAEW, K. SOMKUAN and T. YUYEN, 2021) achieved a 97% on the test data for 6
ISL gestures in real time. This study does better in the aspect of two hand signing
because using similar approach achieved a 92.6 % accuracy in real time on the full BSL
dataset with 2 extra labels making a total of 28.

(S. ADHIKARY, A. K. TALUKDAR) achieved a 97.4% accuracy in ISL recognition using just 11
gestures. The result from the confusion matrix was hard to interpret because of the type
of confusion matrix plot used and the amount of data per class was not specified.

(V. H. IYER et al., 2022.) used mediapipe to build a gesture recognition system on three
distinct gestures and achieved a real time accuracy of 87.5% which is inadequate given
how distinct the signs are and the number of classes used.

This work achieved a better result on full datasets than any of the study done so far. The
BSL system developed is capable of both static and dynamic sign language recognition.
This work also gives a good real time accuracy on both the pose and non-pose methods
and shows that both have their strengths and weaknesses as can be seen from the Table
showing the real time accuracy. The average of each label recognized across the 6
models is taken to give the percentage likelihood of that label being recognized in real
time. Any label having over 80% have a very good likelihood of being detected in real
time. M and N performed the worst with just a 16.7% chance of being recognized because
of how similar the signs are. J is a dynamic language and did not seem to be recognized
when the model trained to detect with just the hand landmarks were used, but dynamic
gestures created for “.” and space character had no such problems.

52 | P a g e

Chapter 5

5.1 Summary

A suitable dataset was gotten from the university college London and used as a baseline
to generate the data used to train the deep learning models. The generated data was
stored in a structured file system as explained in sub section 3.1.1. The data was then
pre-processed as explained in sub section 4.1.8. The various models were trained and
evaluated after each training using test data and real time testing. Two methods were
used to develop models using pose in combination with hand landmarks and just hand
landmarks. A graphical user interface was built and used to perform the model inference
as that gives practicality to the work. After extensive testing the results showed that GRU
slightly outperformed LSTM and CONV1D in real time testing and had a better
generalization capability in this instance. The result also showed that sign language
recognition without pose landmarks performed better overall although not without its
limitations. The proposed method was able to detect both static and dynamic sign
languages in the BSL dataset.

5.2 Conclusion

This study born out of the need to bridge the communication gap between the public and
BSL signers with severe hearing loss using artificial intelligence, achieved its aim. All
objectives set out at the beginning of the study were achieved and more. The study also
proved that it is possible to develop a truly scalable BSL recognition system by merging
Google mediapipe framework and deep learning. During the study two viable ways using
the mediapipe framework was used and they can both be used to accomplish BSL sign
language recognition given more data and time. The study also showed some of the
challenges with the mediapipe landmark detection system and how it might affect the
data collection process and real time testing. This work answered the research question
and proved that using a Vision based AI system the communication gap between the deaf-
mute community of BSL signers and the public can be bridged.

53 | P a g e

Limitations

 The are several limitations in the system and model developed and they have been
itemized below

1. Generating the data using media pipe can create a lot of noise in the data because
of the flickering and there is not any known way to clean the data like in normal
machine learning process.

2. Because of the flickering the real time testing trails behind the test data accuracy
due to the type of data generated.

3. Letters like L, M, N, V, O, I, U having similar signs cannot be predicted with

certainty because of the flickering during real time testing.

4. Not enough data is used in the training process.

5. A sign was not developed for “delete” meaning a label cannot be deleted from the
sentence during sentence formation even if it is wrong.

6. Sign for C in the BSL dataset and the sign developed for “.” are often confused

during real time testing when models using both pose and hand landmarks were
used.

7. BSL recognition using just hand landmarks for recognition will work well in
fingerspelling but have real limitations when the pose plays a key factor which is
more real-world scenario. A simple example of that is the sign for brown that
requires the palm be rubbed on the arms. Without pose estimation it will be
impossible to detect that.

Recommendations/Future work

Looking back several steps could have been done differently, new methods and
algorithms tried. This would have helped improve the quality of the data and models
generated.

1. Restructure the data during the pre-processing step to make it digestible by
machine learning algorithms like SVM and random forest classifier for static sign
language recognition as the study is structured towards both static and dynamic
SLR as the latter is a time series analysis which non-linear models cannot handle.

2. The method of data generation process by taking pictures that are of high
resolution and passing them through the mediapipe landmark detection model can
be tried to help reduce the flickering problem.

54 | P a g e

3. Try to classify signs into static dynamic and no sign before any classification
process as done by (M. H. ISMAIL, S. A. DAWWD and F. H. ALI, 2021.

4. Generate more data that can be used for training to make the model more robust
and increase the generalization ability.

5. Generate data that includes more of the landmark key points as this study takes
only the arms and shoulders. This will help the model more adaptable to real world
situations.

6. Build a smartphone app that can be used to test the model in a real-world scenario
and check scalability

7. Try an increase in the number of frames used in prediction in real time and train
the model accordingly which might increase the accuracy in real time as shown by
(D. BISHT et al., 2022), this approach might take a longer time for the model to
predict but with advances in the processing power of devices that challenge can be
easily overcome in the future.

8. From the results in the real time result table the alphabets that have below 80% in
the average prediction across all model can benefit from better data collection.

55 | P a g e

References
1. A. RUSTAGI, SHAINA and N. SINGH, 2021. American and Indian Sign Language

Translation using Convolutional Neural Networks. - 2021 8th International
Conference on Signal Processing and Integrated Networks (SPIN). pp.646-651

2. N. BUCKLEY, L. SHERRETT and E. LINDO SECCO, 2021. A CNN sign language
recognition system with single & double-handed gestures. - 2021 IEEE 45th Annual
Computers, Software, and Applications Conference (COMPSAC). pp.1250-1253

3. BAHARETH MOHAMMED, 2022. ARTIFICIAL INTELLIGENCE IN GOVERNMENTS
SECTORS.

4. ADEYANJU, I.A., O.O. BELLO and M.A. ADEGBOYE, 2021. Machine learning methods
for sign language recognition: A critical review and analysis. Intelligent Systems
with Applications, 12, 200056

5. M. MARAIS et al., 2022. An Evaluation of Hand-Based Algorithms for Sign Language
Recognition. - 2022 International Conference on Artificial Intelligence, Big Data,
Computing and Data Communication Systems (icABCD). pp.1-6

6. D. BISHT et al., 2022. Smart Communication System Using Sign Language
Interpretation. - 2022 31st Conference of Open Innovations Association (FRUCT).
pp.12-20

7. V. H. IYER et al., 2022. Sign Language Detection using Action Recognition. - 2022
2nd International Conference on Advance Computing and Innovative Technologies
in Engineering (ICACITE). pp.1682-1685

8. M. H. ISMAIL, S. A. DAWWD and F. H. ALI, 2021. Arabic Sign Language Detection
Using Deep Learning Based Pose Estimation. - 2021 2nd Information Technology To
Enhance e-learning and Other Application (IT-ELA). pp.161-166

9. A. CHAIKAEW, K. SOMKUAN and T. YUYEN, 2021. Thai Sign Language Recognition:
an Application of Deep Neural Network. - 2021 Joint International Conference on
Digital Arts, Media and Technology with ECTI Northern Section Conference on
Electrical, Electronics, Computer and Telecommunication Engineering. pp.128-131

10. S. ADHIKARY, A. K. TALUKDAR and K. KUMAR SARMA, 2021. A Vision-based System
for Recognition of Words used in Indian Sign Language Using MediaPipe. - 2021
Sixth International Conference on Image Information Processing (ICIIP). pp.390-394

11. NAVEENKUMAR, M. and A. VADIVEL, 2015. OpenCV for computer vision
applications. Proceedings of national conference on big data and cloud computing
(NCBDC’15). pp.52-56

12. I. CULJAK et al., 2012. A brief introduction to OpenCV. - 2012 Proceedings of the
35th International Convention MIPRO. pp.1725-1730

13. LUGARESI, C. et al., 2019. Mediapipe: A framework for building perception
pipelines. arXiv preprint arXiv:1906.08172,

14. T, R., 2020. LSTMs Explained: A Complete, Technically Accurate, Conceptual Guide
with Keras.

15. KHANDELWAL, R., 2019. Multivariate Time Series using Gated Recurrent Unit -GRU.

16. KIRANYAZ, S. et al., 2021. 1D convolutional neural networks and applications: A
survey. Mechanical Systems and Signal Processing, 151, 107398

17. KASAPBAŞI, A. et al., 2022. DeepASLR: A CNN based human computer interface for
American Sign Language recognition for hearing-impaired individuals. Computer
Methods and Programs in Biomedicine Update, 2, 100048

18. KATOCH, S., V. SINGH and U.S. TIWARY, 2022. Indian Sign Language recognition
system using SURF with SVM and CNN. Array, 14, 100141

56 | P a g e

19. N. BUCKLEY, L. SHERRETT and E. LINDO SECCO, 2021. A CNN sign language
recognition system with single & double-handed gestures. - 2021 IEEE 45th Annual
Computers, Software, and Applications Conference (COMPSAC). pp.1250-1253

20. W. SULIMAN et al., 2021. Arabic Sign Language Recognition Using Deep Machine
Learning. - 2021 4th International Symposium on Advanced Electrical and
Communication Technologies (ISAECT). pp.1-4

21. ADEYANJU, I.A., O.O. BELLO and M.A. ADEGBOYE, 2021. Machine learning methods
for sign language recognition: A critical review and analysis. Intelligent Systems
with Applications, 12, 200056

22. JEAN, B.G., 1979. Gestural Linguistics: The Signs of Language. Edward S. Klima and
Ursula Bellugi with ten others. Harvard University Press, Cambridge, Mass., 1979.
xiv, 418 pp., illus. $25. Science, 205(4412), 1253-1254

23. M. QUINN and J. I. OLSZEWSKA, 2019. British Sign Language Recognition In The
Wild Based On Multi-Class SVM. - 2019 Federated Conference on Computer Science
and Information Systems (FedCSIS). pp.81-86

24. Y. MORI and M. TOYONAGA, 2018. Data-Glove for Japanese Sign Language Training
System with Gyro-Sensor. - 2018 Joint 10th International Conference on Soft
Computing and Intelligent Systems (SCIS) and 19th International Symposium on
Advanced Intelligent Systems (ISIS). pp.1354-1357

25. H. S. ANUPAMA et al., 2021. Automated Sign Language Interpreter Using Data
Gloves. - 2021 International Conference on Artificial Intelligence and Smart
Systems (ICAIS). pp.472-476

26. N. TUBAIZ, T. SHANABLEH and K. ASSALEH, 2015. Glove-Based Continuous Arabic
Sign Language Recognition in User-Dependent Mode. , pp.526-533

27. A. ABDULLAH, N. A. ABDUL-KADIR and F. K. CHE HARUN, 2020. An Optimization of
IMU Sensors-Based Approach for Malaysian Sign Language Recognition. - 2020 6th
International Conference on Computing Engineering and Design (ICCED). pp.

28. WILLIAMS ORENDA, Understanding Matrices to Perform Basic Image Processing on
Digital Images.

29. SOFFER, S. et al., 2019. Convolutional neural networks for radiologic images: a
radiologist’s guide. Radiology, 290(3), 590-606

30. M., S., P. M.V.D. and K. P.V.V., 2021. Multi-view motion modelled deep attention
networks (M2DA-Net) for video based sign language recognition. Journal of Visual
Communication and Image Representation, 78, 103161

31. KATILMIŞ, Z. and C. KARAKUZU, 2021. ELM based two-handed dynamic Turkish Sign
Language (TSL) word recognition. Expert Systems with Applications, 182, 115213

57 | P a g e

Appendix

Section A Ethics Application form

58 | P a g e

59 | P a g e

60 | P a g e

Section B: Evaluation figures

Figure 51:confusion matrix for pose LSTM

61 | P a g e

Figure 52: LSTM confusion matrix without pose

62 | P a g e

Figure 53: confusion matrix for pose GRU

63 | P a g e

Figure 54: confusion matrix for non-pose GRU

64 | P a g e

Figure 55: confusion matrix for CONV1D no pose

65 | P a g e

Figure 56:confusion matrix for CONV1D using pose and hand landmarks for prediction

66 | P a g e

Figure 57: training parameters for conv1D no pose

Figure 58: GRU parameters

67 | P a g e

Figure 59:LSTM training parameters

68 | P a g e

Section C: Entire code for implementation

69 | P a g e

70 | P a g e

71 | P a g e

72 | P a g e

73 | P a g e

74 | P a g e

75 | P a g e

76 | P a g e

77 | P a g e

78 | P a g e

	Abstract
	Acknowledgement
	Table Of Figures
	Chapter 1
	1.1 Chapter overview
	1.2 Introduction
	1.3 Background
	1.4 Research question
	1.5 Problem Statement
	1.6 Value Proposition
	1.7 Success Metrics
	1.8 Aim
	1.9 Objectives

	Chapter 2
	2.1 Related Studies
	2.1.1 Chapter overview
	2.1.2 Wearables method review
	2.1.3 visual-based method review
	2.1.4 Mediapipe method review

	Chapter 3 Methodology
	3.1 Chapter Overview
	3.2 Proposed Method
	3.2.1 Dataset
	3.2.2 OpenCV
	3.2.3 Mediapipe
	3.2.4 LSTM
	3.2.5 GRU
	3.2.6 Random Forest Classifier
	3.2.7 Streamlit
	3.2.7 1D convolutional neural network

	Chapter 4
	4.1 Chapter overview
	4.2 Implementation
	4.2.1 input
	4.2.2 Detect key points using mediapipe
	4.2.3 Drawing of landmarks
	4.2.4 Dataset generation
	4.2.5 Extract datapoints
	4.2.6 Create folders
	4.1.7 save key points
	4.2.8 Data pre-processing
	4.2.9 model building and training
	4.2.10 GRU
	4.2.11 LSTM
	4.2.12 CONV1D

	4.2.13 Graphical user interface
	4.2.13.1 Description
	4.2.13.2 Detection
	4.2.13.3 Program flow

	4.2.14 Model evaluation

	Chapter 5
	5.1 Chapter overview
	5.2 Result
	5.3 Results for the Model Evaluation
	5.3.1 GRU
	5.3.2 LSTM
	5.3.3 CONV1D

	5.4 Discussion

	Chapter 5
	5.1 Summary
	5.2 Conclusion

	Limitations
	Recommendations/Future work
	References
	Appendix
	Section A Ethics Application form
	Section B: Evaluation figures
	Section C: Entire code for implementation

