
 

1 | P a g e  
 

 

 

MSC APPLIED ARTIFICIAL INTELLIGENCE AND DATA 
SCIENCE 

 

 

SEPTEMBER 2022 

 

 

GABRIEL OSI BRAIMAH 

 

 

 

BRIDGING THE COMMUNICATION GAP BETWEEN 
THE PUBLIC AND BSL SIGNERS WITH SEVERE 

HEARING LOSS USING ARTIFICIAL INTELLIGENCE 

 

 

 

 

 

SOLENT UNIVERSITY 

 

FACULTY OF BUSINESS, LAW AND DIGITAL 
TECHNOLOGIES 

 

 

 



 

2 | P a g e  
 

SOUTHAMPTON SOLENT UNIVERSITY 

 
 

FACULTY OF BUSINESS, LAW AND DIGITAL 
TECHNOLOGIES 

 

 
BRIDGING THE COMMUNICATION GAP BETWEEN THE PUBLIC 

AND BSL SIGNERS WITH SEVERE HEARING LOSS USING 
ARTIFICIAL INTELLIGENCE 

 

 

BY 

 

 

GABRIEL OSI BRAIMAH  

STUDENT NUMBER: Q15695786 

 

SUPERVISOR: Dr FEMI ISAAQ 

SEPTEMBER 2022 

 

 
PROJECT IN PART FULFILMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF  

 

 

MASTERS  

 
IN 

 

 APPLIED ARTIFICIAL INTELLIGENCE AND DATA 
SCIENCE 

 

 



 

3 | P a g e  
 

 

 

Abstract 
 

Finding an effective artificial intelligence real time sign language recognition 
translator is still a barrier even with recent advancements in computer vision and 
machine learning more so for British sign language users as bulk of the research has 
been done on American and Indian sign language. There have been methods 
proposed to tackle the challenges of building an effective SLR translator using data 
gloves, arm sensors and computer vision. Every other method aside the computer 
vision method is intrusive, computationally intensive and can be inconvenient 
which makes them unscalable at least for now. This work aims to present a vision-
based realistic approach to bridging the communication gap between the public 
and the deaf-dumb community of British sign language users using a real time BSL 
to English language translator capable of recognizing both static and dynamic BSL 
gestures. A webapp was built using the Streamlit framework which hosts the deep 
learning systems trained to recognize the BSL signs. The system uses a webcam to 
feed live images to the mediapipe holistic model which detects the pose and hand 
landmarks, the landmarks are then extracted, pre-processed, and fed to the deep 
learning models for classification with each model achieving over 90% accuracy on 
test data and the GRU model having 85% accuracy in real time test using just the 
hand landmarks to make prediction. 
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Chapter 1 
 

1.1 Chapter overview 
 
This chapter gives a brief history on sign language and the challenges faced by 
people with severe hearing loss. A brief history of artificial intelligence and its sub 
areas are also touched. The following areas were also outlined in the section.  

• Research question 

• Problem statement 

• Value proposition  

• Success metrics 

• Aim  

• Objectives 

 

1.2 Introduction 
 

Communication is a very essential part of the daily lives of all animals because it is 
the only way to express wants and needs, socialize, share knowledge and as 
humans being very expressive this is even more true. Communication can be 
verbal, textual, or done through visualizations. Majority of human-to-human 
communication is done verbally while a significant number of the deaf-dumb 
community communicate using sign language.     

 

Sign language can be described as a language which combines hand gestures and 
body language to convey a message [Rustagi, Shaina and Singh, 2021]. As different 
verbal languages exist throughout the world so do different sign languages exist 
throughout different regions of the world which makes it difficult to have a 
standardized sign language which can then be used to build a universal sign 
language recognition system. The United Kingdom for example has both the British 
Sign language which is focused more on fingerspelling and Makaton which takes a 
more general approach by using signs and symbols in conjunction with spoken 
words. The price and relative availability of human sign language translators mean 
hearing impaired people cannot easily have access to these translators when one is 
needed.   

 

British sign language (BSL) like Indian sign language (ISL) majorly consists of using 
two hands to form signs and fingerspell words except for the alphabet “C” which 
uses one hand while sign language like American sign language use one hand (ASL) 
to make signs. The British sign language is used by 151,000 people in the United 
Kingdom as stated in the united kingdom’s government’s website. There are only 
1540 registered BSL interpreters according to the National Registers of 
Communication Professional as of 2019 which is just about 1% of the total users of 
BSL.     

 

Artificial intelligence is a broad field encompassing several areas like machine 
learning, robotics, computer vision, and deep learning. Artificial intelligence has 
been referred to as the scientific approach adopted to make machines smart 
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[Buckley, Sherrett and Secco, 2021].  The influence Artificial intelligence has on 
our everyday lives cannot be overstated, it has become so prevalent in our society, 
dominated the decision-making process of businesses, and permeated all levels of 
our social structure, from the likes of Alexa and Siri to self-driving cars to fraud 
detection systems used by banks, the list continues to grow.  

 

 

  
Figure 1: Artificial intelligence  

 

Computer vision is a field of artificial intelligence that deals with the development 
of computers systems capable of extracting information from images, videos, any 
visual inputs, according to international business machines (IBM). The applications 
of computer visions systems in an ideal sense are limitless just as the human sight 
is to humans. Computer vision is already used in industries like medicine, 
manufacturing, self-driving cars, surveillance systems, and the service sector.  

 

  
Figure 2:Relation between Artificial Intelligence, Machine Learning and Deep Learning, Computer Vision. 
[Mohammed 2022] 
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Sign language recognition systems brings together computer vision, machine 
learning or deep learning models used for classification and in some cases other 
areas of software development like webapp development using streamlit which 
was used in this work.  

 

1.3 Background 

 
Since the advancement in computer vision and artificial intelligence the possibility 
of building SLR systems became ever more realistic, and a lot of studies have been 
done on realising such possibility as shown by (ADEYANJU, I.A., O.O. BELLO and 
M.A. ADEGBOYE, 2021). 

 

 
Figure 3: cumulative publications on intelligent SLR systems from the scopus database (Adeyanju 2021) 

 

 
The bulk of the research on such intelligent systems have gone to other sign 
languages aside the BSL as a simple search as at the time of writing this paper on 
the ieeexplore.org website using the combination “British sign language” AND 
“machine learning” yields just two results while “British sign language” AND “deep 
learning” yields 3 results with one focusing on gestures which makes it semi-
irrelevant to this study. 

  

Two main methods have been adopted by the community in the development of 
these systems, and different techniques have been introduced to the data 
collection, data pre-processing and classification steps in combination with several 
machine learning and deep learning algorithms. One main method involves the 
wearing special gloves capable of tracking the movement of the fingers as done by 
(Y. MORI and M. TOYONAGA, 2018) and (H. S. ANUPAMA et al., 2021) while the 
other main method is vison based and it involves using everyday multimedia 
cameras as done (KATOCH, S., V. SINGH and U.S. TIWARY, 2022), (KASAPBAŞI, A. et 
al., 2022) and several others. For sign language systems to have its desired societal 
function it should be easily accessible, the best approach is to create a system 
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where the images are gotten from normal everyday cameras available in our 
electronic devices as it is easily accessible and cheap.  

 

1.4 Research question  
 

is it possible to bridge the communication gap between BSL signers with severe 
hearing loss and the public using a visual-based SLR artificial intelligence method.  

 

1.5 Problem Statement 
 

The importance of communication in our everyday lives cannot be overstated as it 
forms the backbone of all our social activities. 466 million people suffer from 
different levels of hearing loss as stated by the world health organization, this is 
5% of the world’s population with the number expected to increase in the coming 
years. 11 million people suffer from severe hearing loss and 151,000 of them 
communicate using British sign language according to the United Kingdom’s 
government. The United Kingdom website on the statistics on people with severe 
hearing loss states that, Half of these vulnerable individuals are likely to have poor 
mental health and 35% are likely to be unemployed. The data shows that due to 
the communication gap these vulnerable individuals with severe hearing loss 
cannot fully access the services available to the public, are more likely to be poor 
and more like to suffer from mental issues.  

 

1.6 Value Proposition 
 

Having a BSL recognition system that truly bridges the communication gap between 
these vulnerable individuals and the public will have some benefits which includes 
but not limited to  

• Improved Standard of living 

• Easier Access to medical services 

• Better integration into the society 

• Technology pushes people to learn new things because of the ease of access 
and use so having such a system will make learning BSL easy and hereby 
further help bridge the communication gap.  

• Carers don’t have to understand BSL before providing care to vulnerable 
people using BSL recognition systems.  

 

   

1.7 Success Metrics 
 

The success metric for this work is set at 90% and above in a real-world scenario 
and not a controlled setting as this work is aimed at taking a realistic step toward 
building a BSL recognition system that can be commercially scalable in the future.  
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1.8 Aim 
 

The aim of this project is to develop a BSL recognition system that takes a 
substantial first step towards bridging the communication gap between BSL users 
and the public.  

 

1.9 Objectives 
 

Meeting the aim of this project require the objectives stated below be met. 

• Gather a suitable BSL dataset 

• Pre-process the generated data 

• Train and evaluate different models 

• Form words with classified labels 

• Build a webapp using streamlit to host the BSL recognition system. 
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Chapter 2 

 

2.1 Related Studies 

 

2.1.1 Chapter overview 
 
A total of 15 papers were collected and reviewed from both ScienceDirect and 
ieeexplore.org. This chapter starts with a review of the studies done using the 
wearables approach followed by limitations of that approach. The chapter then 
moves on to the literature review about the visual methods focusing on the work 
done using CNN in the second paragraph as it is the dominant algorithm used when 
dealing with images. The third paragraph focuses on the work done in SLR using 
mediapipe. The fourth paragraph gives suggestions on merging both the wearables 
and vision approach for SLR is given having reviewed the work done in the papers. 
Finally, the chapter ends with a table of the reviewed works in mediapipe 
itemizing the important aspects as it relates to this work and giving my comments 
on each study.  
 

2.1.2 Wearables method review  
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There are two approaches used in creating a sign language recognition system 
which are vision based and wearables-based method. The wearable methods make 
use of special gloves or arm sensors. Data-glove technology converts finger 
positions to electrical impulses to determine the posture of the hands. 

 

 (Y. MORI and M. TOYONAGA, 2018) proposed a method for developing SLR system 
for Japanese sign language that involved connecting data gloves with flex sensors 
and accelerometer and a gyro sensor to detect hand motion and shape of each 
finger this analogue signal is then converted to digital data by an Arduino data 
control unit which is then sent to a decision system, The study achieved an 
accuracy of 51%. The design of this approach makes it inconvenient to use coupled 
with the low accuracy makes the proposed method unscalable 

 

(H. S. ANUPAMA et al., 202) also used a similar approach to (Y. MORI and M. 
TOYONAGA, 2018) but used it with supervised learning process using the k nearest 
neighbour and other algorithms. The study also added an audio device to the 
gloves that converts the signs to spoken phrases. The k-nearest neighbour achieved 
an accuracy of 93% in this study. Like (Y. MORI and M. TOYONAGA, 2018) the design 
makes it unscalable. No real time results was reported for the study to check the 
accuracy. 

 

(N. TUBAIZ, T. SHANABLEH and K. ASSALEH, 2015) used a modified K-Nearest 
neighbour as well as a DG5-V hand gloves embedded with flex sensor and a 3 axes 
accelerometer, the glove is also wireless and uses a battery as opposed to previous 
works, the proposed method had an accuracy of 98.9%.  Data glove technologies 
for sign language recognition attempts to circumvent the environmental limitations 
of vision-based approaches and these proposed data glove designs can be 
considered inconvenient and restrictive by users although  

(A. ABDULLAH, N. A. ABDUL-KADIR and F. K. CHE HARUN, 2020) proposed a less 
bulky design with fewer sensors, it is still not compact and convenient enough for 
everyday use. 

 

2.1.3 visual-based method review  
 

Vision-based approach uses a webcam or in some cases phone cameras to pass in 
the required data to the sign language recognition systems. Vision based 
approaches are non-invasive and do not require any dedicated hardware making it 
convenient and the most commercially scalable of the two methods of SLR 
systems. The vision-based approach like the data gloves approach has had a lot of 
research done using different machine learning and deep learning techniques.  
Convolutional neural network (CNN) is used extensively in vision-based approaches 
because of its dominance in computer vision. CNN is well suited to work on grid 
like data which is what images are. CNN also has an automatic feature extraction 
which implies that sometimes little work is done to extract the features from the 
images before they are being fed into the CNN model.  

 

(KASAPBAŞI, A. et al., 2022) developed an SLR system for ASL and achieved an 
accuracy of 99.38% with a 0.0250 loss. Like (KATOCH, S., V. SINGH and U.S. 
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TIWARY, 2022) and most vision-based approaches, image segmentation and 
sometimes background subtraction accompanied by specifying a region of interest 
(ROI) where the signs must be done before any classification can take place is a 
common practice when building vision based SLR systems. The study also involved 
training the CNN model using black and white images and preprocessing the signs 
to black and white during real time testing.  

 

(KATOCH, S., V. SINGH and U.S. TIWARY, 2022) used several preprocessing steps 
like skin segmentation, gaussian filtering, SURF feature extraction and clustering 
to generate the data used in the ISL recognition system. The CNN model in this 
study performed marginally better than the SVM and achieved an accuracy of 
99.64% on test data.  The real time test was done in an environmental setting that 
gives contrast to the hands and therefore designed to maximize the accuracy 
rather than using the same method used to generate the data for the study. 

 

( N. BUCKLEY, L. SHERRETT and E. LINDO SECCO, 2021) developed a BSL 
recognition system on 19 static gestures. The system is powered by a CNN model 
and performed the typical pre-processing steps including image binarization. 

  

Using a combination of AlexNet which is a version of CNN, and LSTM (W. SULIMAN 
et al., 2021) achieved an accuracy of 95.9% although it was signer dependent. The 
proposed system developed for Arabic sign language (ARSL) involved using AlexNet 
for feature extraction and LSTM for classification. The system in the pre-processing 
step used skin detection and face detection for image segmentation, further image 
processing was carried out using morphological operations to remove small regions, 
finally the two largest regions which are the hands were extracted and used to 
form the dataset. The problem with such an approach the user needs to always 
show the bare arms for the process to work which will not be the case most times 

 

( M. QUINN and J. I. OLSZEWSKA, 2019) developed a BSL recognition system 
powered by SVM but used a different approach in the pre-processing step that 
involved downscaling then using several computer vision morphological operations 
such eroding and dilation combined with histogram of oriented gradients before 
performing feature extraction and finally upscaling to produce a HOG image. The 
study showed good performance regardless of the environment on random gestures 
and did not give any results on the real time tests using BSL signs.  

 

Developing SLR systems using CNN requires lots of pre-processing and is easily 
affected by environmental factors coupled with the fact that CNN requires a lot of 
data to train that is why most researchers using this method specify a region of 
interest to reduce the number of features per image which helps the model train 
faster. CNN is not as fast as other neural networks like LSTM so using such a model 
in real time prediction might be a hassle coupled with the fact that the average 
signing rate is 2.3-2.5 signs per second (JEAN, B.G., 1979). Additionally, this 
approach is not suitable for everyday life as so many environmental factors can 
easily affect the useability of such systems. Another approach adopted in recent 
years is the use of mediapipe. Most of the hand detection is already done by the 
framework so researchers can focus on building the AI systems that take advantage 
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of the mediapipe framework. Mediapipe also come with several other advantages 
that make it suitable for real time prediction as will be discussed in later chapters. 

 

2.1.4 Mediapipe method review  
 

(M. MARAIS et al., 2022) performed Argentine sign language recognition using hand 
landmarks extracted with mediapipe holistic model which was then used to train a 
1D-CNN model used in classifying the signs. Also, another method involving the 
segmentation of hands from the entire image was done using image thresholding 
with the researchers wearing fluorescent gloves and final images fed to the Pruned 
VGG and ResNet models. Finally, raw images were fed to a Pruned VGG and ResNet 
models for training. The 1D-CNN plus mediapipe combination got an accuracy of 
94.91% on test data, method 2 got accuracies of 47.83% and 43.24% on ResNet and 
Pruned VGG model respectively. Method 3 got an accuracy of 95.40% on the 
Prunned VGG model slightly edging out the ResNet model. The final 1D-CNN model 
was not tested in real time to check for real world accuracy and the study was not 
very detailed. 

 

(D. BISHT et al., 2022) uses a web interface that hosts an American sign language 
recognition system powered by a random forest classifier which achieved an 
accuracy of 94.69%. The study also implemented many features like speech to 
text, text to speech and autocorrect but the method used to predict in real time 
makes it difficult to commercially scale and improve as real time prediction is 
more of action recognition rather than static sign language recognition.  

 

(V. H. IYER et al., 2022.) implemented a system trained to recognize 3 classes 
using mediapipe for face, pose and hand landmarks extraction and trained an LSTM 
model, the study achieved an accuracy of 87.5% for the 3 labels which is not 
adequate compared to other studies like (M. MARAIS et al., 2022),( M. H. ISMAIL, S. 
A. DAWWD and F. H. ALI, 2021.) and (D. BISHT et al., 2022) which achieved higher 
accuracy on full datasets. 

 

( M. H. ISMAIL, S. A. DAWWD and F. H. ALI, 2021) developed an SLR system 
classifying signs into static, dynamic and non-sign. The data comprised of 7500 
videos with mediapipe used to extracts the pose, and hand landmarks. A Bi-GRU 
was then trained and achieved an accuracy of 99.05%.  

 

(A. CHAIKAEW, K. SOMKUAN and T. YUYEN, 2021.) developed a system for Thai sign 
language recognition system for both desktop and smartphone picking 5 labels with 
100 videos per label. The LSTM model used in this study achieved an accuracy of 
97% on test data. 

 

(S. ADHIKARY, A. K. TALUKDAR) developed a system recognizing 11 ISL gestures 
using mediapipe in combination with different models to perform SLR but failed to 
detail the clear method used to achieve the results. Also the work was not done on 
the full ISL dataset.  
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A hybrid method can be used to build, the wearables for collecting data and 
building the numeric dataset to ensure the accuracy of the data being collected 
while a vision-based approach using mediapipe holistic model can be used to 
extract the position of the hands from a live feed camera during data real-time 
testing.  
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Study Method Models 
implemented 

Accuracy 

      % 

Real time 
Prediction 

Background 
Dependency 

User 
Interface 

Comments 

M. MARAIS 

et al., 
2022 

Worked on the LSA64 dataset and 

experimented with 3 different 
methods with the raw image 
processing having the highest 
accuracy on test data 

1D-CNN 

ResNet 

Pruned VGG 

94.91 

95.40 

94.50 

 No Yes No The study explored different methods for SLR 

but was not very detailed. 

D. BISHT 
et al., 

2022 

Trained different models on ASL 
dataset and few ISL alphabets using 

mediapipe to extract the hand 
features 

RandomForestClassifier 

Naive Bayes Classifier 

Logistic regression 

KNN 

SVC 

LwP 

94.58 

79.74 

89.95 

89.15 

90.91 

58.45 

yes no yes A good study overall but the real time 
prediction using each frame rather than a 

combination of frames for the sign recognition 
is not suitable for commercial scaling and 
can’t be used for action recognition which is 
what real time sign language prediction is 
geared towards. 

V. H. IYER 
et al., 

2022. 

Trained an LSTM model on 3 labels 
using mediapipe to extract features 

LSTM 87.5 yes no yes Poor accuracy on few labels, Face datapoints 
not needed to perform the described 

prediction 

M. H. 
ISMAIL, S. 
A. DAWWD 
and F. H. 

ALI, 2021. 

Implemented a system that 
recognizes Arabic sign language into 
static, dynamic and non-sign powered 
by a Bi-GRU model classifying the 
signs from video frames  

Bi-GRU 99.05 no yes no  did not test the model in real time to confirm 
the accuracy 

 

 

 

 

 

A. 
CHAIKAEW, 
K. 
SOMKUAN 

and T. 
YUYEN, 
2021. 

Designed a SLR system for Thai sign 
language 

LSTM 

Bi-LSTM 

GRU 

97 

94 

94 

no yes  no No real time testing was done to validate the 
accuracy of the models 

S. 
ADHIKARY, 
A. K. 
TALUKDAR 

Implemented a system on ISL 
recognition with 11 gestures 

Decision Tree Classifier 

Randomforestclassifier 

Gradient boosting 
classifier 

83.8 

97.4 

95.7 

yes no yes Methodology on the data preprocessing and 
model training is unclear. The number of 
images per class wan not defined. Therefore, 
interpreting the type of confusion matrix 

presented without the number per class is not 
possible.  
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Chapter 3 Methodology 
 

3.1 Chapter Overview 
 
All libraries, algorithms and tools used in the building of the artefact are discussed in this 
chapter. The chapter begins with the proposed method for this study then proceeds to 
talk about the dataset and where it was gotten from followed by the discussion of 
libraries and tools 

 
 

3.2 Proposed Method 
 
Before this proposed method was reached 2 other methods were tried. A total of 260 
images was collected for the 26 classes of the BSL dataset for both right and left hands 
from a secondary signer with each class having 10 images each, 8 for training and 2 for 
testing. The first method involved creating a directory structure having train and test 
folders as required by CNN. The created folders will have a folder for each of the 
alphabets with 8 images of each alphabet going to their respective sub folders in the 
train folder and the remaining 2 goes to their associated sub folders in the test folder.  
During training it became very clear a lot more images was needed to be generated to 
achieve any real accuracy as the validation accuracy did not get passed 6% because the 
pilot study conducted showed one of the major drawbacks of CNN is the amount of data it 
needs to train. Given the time constraints and potential challenges that comes with 
generating a robust data for such a project another approach was needed. 
 
The next approach also used images collected in the first step but this time with a 
pretrained mobilenet SSD model in combination with TensorFlow object detection. All 
the image files with their associated xml files were split into training and test files and 
placed in the train and test folders with no sub folders for the alphabets needed like in 
the first method. In this approach a form of directed learning was done using image 
labelling. The images were labelled using an application called labelImg which generates 
an xml file for the image being labelled. The signs in the image were selected and the 
associated English alphabet was used to label the image. After testing the first time there 
was no real accuracy observed during real time test. After generating the TensorFlow 
record and changing the configuration file the model still did not learn. Given the time 
constraint the method using mediapipe needed to be explored.  
 

This method uses the OpenCV library to access the web camera which takes images and 
passes these images frame by frame to the google mediapipe holistic model for pose, left 
and right-hand landmarks detection which are then extracted into a NumPy array and 
stored using the npy extension. These NumPy files are then loaded and preprocessed 
before been passed to the models for training. The models are then evaluated using 
accuracy, precision, F1 score and recall. The selected models are then deployed using the 
h5 format and a webapp using Streamlit is built to perform real time BSL recognition 
testing.  
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Figure 4: Block diagram of intended model 

 

3.2.1 Dataset 
 

The base line in which the data was generated was gotten from the university college 
London (UCL). It has the alphabets A-Z. The signs in this dataset were followed when 
generating the data needed to train the models. A function was utilized in the data 
collection process, each frame is read from the webcam then passed to the mediapipe 
holistic model for landmark extraction. Each alphabet had 60 folders with each folder 
having 30 files with the npy extension representing the extracted landmarks of each 
frame from 1-30, as 30 frames per second was used. It was ensured that the extracted 
key points covered just the arm pose landmark excluding other body landmarks, left and 
right landmarks. The data generated from this process was for left hand only. The 26 
alphabets were used for the final model. finally, signs were generated for the “.” and 
empty space character.   

 

 
Figure 5:sample of dataset 
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3.2.2 OpenCV 
 

Computer vision has it challenges and solving those challenges will bring about 
possibilities in self driving, engineering, entertainment, and other areas. Intel in 1999 
officially launched OpenCV (open-source computer vision library) (I. CULJAK et al., 2012) 
which is used mainly for image processing (NAVEENKUMAR, M. and A. VADIVEL, 2015.). 
OpenCV is built using C++ which makes it portable and highly optimized. OpenCV has lots 
of functions and algorithms used for edge detection, object tracking and face detection. 
For this work OpenCV will be used to access the webcam and read the frame-by-frame 
images used for further processing in both the data collection and testing phase. 

 

 

3.2.3 Mediapipe 
 

Mediapipe is an open-source, cross-platform, machine learning framework developed by 
google which is specifically used to build pipelines which is then used to perform 
inference over sensory data (LUGARESI, C. et al., 2019.) Using mediapipe developers can 
balance usage resources, run operations in parallel and properly synchronize time series 
data such as audio and video frames. Mediapipe can optimize the detection process by 
synchronizing the GPU and CPU performance. Using Mediapipe, a perception pipeline can 
be built as a graph of components which might include media processing functions and 
trained models used for inference. Sensory data passes through the graph and object 
detection results and landmark annotations leave the graph.  

 

 
Figure 6: Object detection using mediapipe (LUGARESI, C. et al., 2019.) 

 

Mediapipe was written in C++ which makes it light and fast as C++ is compiled to machine 
code which does not need an interpreter to run in real time. This also means that 
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Mediapipe is truly cross platform and can be easily deployed to any platform, Android, 
Windows or MacOS. Using graphs, subgraphs, calculators, developers can tweak 
parameters of each calculator to fit different projects which makes it modular and 
reusable.  

 

Mediapipe performs the 3D tracking of hand and postures using landmarks. The hand 
landmarks consist of 21 landmarks for each hand while the pose has 33 landmarks. Each 
hand is connected through a line passing through the shoulders. Using this approach to 
determine the position of fingers and postures makes mediapipe very effective in building 
sign language recognition systems. Using the variable detection confidence and tracking 
confidence parameters within the mediapipe holistic model the model can be tuned to 
ensure the percentage sureness of the hand detection. Mediapipe is easy to set up and 
use so the time of developers can be better spent focusing on building the models.  

 

 
 
Figure 7: mediapipe key points of hands 

 

The figure above shows the media pipe labelled key points for the hand.  

 

 

 
Figure 8: figure showing the mediapipe hand detection and posture keypoints 
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3.2.4 LSTM 
 

LSTM (Long Short-Term Memory) is a sequential deep neural network model that was built 
as a replacement to deep recurrent neural network (RNN) models which had a vanishing 
gradient problem. LSTM was first proposed in 1997 by Sepp Horeiter and Jurgen 
Schmidhuber and has had iterations over the years. LSTM is very good at predicting time 
series data and have gotten a lot of attention over the years by researchers. It is used a 
lot in speech recognition, music composition, handwriting recognition, time series 
anomaly recognition, stock forecasting and so on. Like most neural network information 
in LSTM is passed through layer. LSTM uses the concept of gates in its architecture which 
have different uses.  

 

 
Figure 9: LSTM Cell (T, R., 2020.) 

 
There are 3 gates and their functions are: 

 

Forget gate: This gate within the LSTM cells manages the forgetting of information 
encoded into the previous state that was passed into the current cell.  

Input gate: manages what information from the input in the current time step and the 
previous hidden state will be encoded into the new cell state.  

Output gate: Controls the information from the previous hidden state and input in the 
current time step that will be encoded into the next hidden state in the next time step.   
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3.2.5 GRU 
 

The gated recurrent unit (GRU) is a variation of LSTM introduced by Junyoung Chung, 
Caglar Gulcehre, KyungHyun Cho and Yoshua Bengio in 2014.  It was also created to solve 
the vanishing gradient problem that plagued deep recurrent neural networks, but it does 
it with less parameters than LSTM in the unit cells. It achieves this feat by using 2 gates 
instead of 3 gates like in LSTM. GRU is used in every area LSTM is used.  

 

 
Figure 10: GRU cell (KHANDELWAL, R., 2019.) 

 
There are 2 gates, and their functions are: 

 

Reset Gate: The function of this gate is to determine how much information from 
previous time steps in the current time step should be forgotten.  

Update Gate: the update determines how much information from the previous time steps 
is to be retained and what information from the input in the current time step will be 
encoded into the current hidden state that will be passed into the next time step.  

 

 

3.2.6 Random Forest Classifier  
 

According to IBM random forest is a popular machine learning algorithm trademarked by 
Adele Cutler and Leo Breiman. It combines the output of multiple decision trees to form 
a single result. Random forest can be used for both classification and regression 
problems. It has become popular among researchers because of its flexibility and ease of 
use. The algorithm used in the random forest which is the random forest algorithm 
extends the bagging method as it uses both bagging and feature randomness to create 
trees that are uncorrelated. 
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Figure 11: Random Forest Classifier diagram(IBM) 

   

Each tree in the ensemble is made up of data taken from the training sample and 1/3 of 
the data is set aside to validate the model and it is called out-of-bag data. Random forest 
has several benefits as well as drawbacks. The randomness in which the training data 
shuffled prevents overfitting. Random forest is easy to use because it can handle both 
regression and classification tasks, lastly it can atomically determine features that are 
important to the prediction. Random forest has a few challenges, one is that it can be 
time consuming to train and computationally expensive, require more resources to store 
data and can be complex. Random forest is used in a lot of industries like finance, health 
care and e-commerce. 

 

3.2.7 Streamlit 
 

According to the Streamlit official website, Streamlit is an open source, light weight, 
multi-platform dashboarding framework adapted to python and used in building webapps. 
Streamlit was founded in 2018 by Adrien Treuille and Thiago Teixeria. It is primarily used 
in creating dashboard and building webapps with python. In terms of support Streamlit 
supports major libraries like TensorFlow, matplotlib, OpenCV, seaborn, pandas and 
NumPy to name a few according to the streamlit website. Streamlit is easy to use 
because it is integrated with python, supports a lot of the major libraries, easy to install 
and has python friendly syntax. With streamlit the development is fast and easy and 
source code can be changed and updated while the server is running making rapid 
development and testing possible, although this is a good thing it can hamper the speed 
as the entire code needs to be re-run each time the source code is updated especially 
when computationally intensive routines are within the sources code.  Also, streamlit 
does not have a lot of widgets or design components like other well-established 
frameworks like Django. 

 

3.2.7 1D convolutional neural network 
 

Convolutional neural networks (CNN) are the neural networks that was built to process 
data in a matrix or grid form that is why they have become the de-facto neural networks 
used in computer vision. They are feed forward neural networks with sub sampling layers 
and convolutional layers that alternates. Three dimensional and two dimensional 
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convolutional neural networks have been great in dealing with data in 3D and 2D forms 
such as images and videos frames. The 3D and 2D CNN lose their viability when the data is 
one dimensional. CNN can achieve very high accuracy, but it requires large data to train 
as small or medium size databases were insufficient. Also, the training of a deep CNN 
model can be computationally expensive. 1D CNN has less computational complexities 
than 2D or 3D CNN (KIRANYAZ, S. et al., 2021) because it requires less parameters to 
train. This makes the requirement of using dedicated hardware to train deep neural 
networks less needed. Also, it makes 1D CNN well suited for real-time, low-cost 
prediction. CNN great because they combine feature extraction and classification which 
has fuelled their widespread use. 1D CNN is preferred over other forms of CNN when real 
time prediction is needed, these include areas like speech recognition, real-time 
electrocardiogram monitoring vibration based structural damage detection, rotating 
machinery and so forth. All these factors make CNN a suitable model for sign language 
recognition where images are not passed through the model like this work proposes.   
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Chapter 4 
 

4.1 Chapter overview 
 
This chapter focus on the explanation of all the processes done during the development 
process, which includes but not limited to routines developed for the dataset generation, 
pre-processing, use of OpenCV, GUI and model evaluation. Code snippets are extracted 
from the main body of code and discussed in non-technical terms as much as possible 
except when it is necessary to justify the approach.  

 

4.2 Implementation 
 

To reduce a lot of code duplication a class was created to house the frequently used 
functions and variables. The class was named Braimah while the instance of the Braimah 
class was named vision_class. The instance of the mediapipe holistic model, mediapipe 
drawing model, number of sequence frame length, data path for the folders the system is 
going to operate from, the threshold and alphabets were all housed in the Braimah class 
as shown in the figure below. 

 

 
Figure 12:code snippet showing the housed Braimah class variables 

  

4.2.1 input 
 

The input in the proposed method is the picture frame gotten from the webcam. OpenCV 
is used to access the webcam and leave the channel open. The webcam used can read up 
to 60 frames per second but just 30 frames per second was used in this case.   
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Figure 13:OpenCV function to read images from camera 

 

OpenCV is used to start the video capture and read the images frame by frame. OpenCV 
displays images in the RGB (Red Green Blue) format. Since the resulting frame is a 
product of mediapipe holistic model landmark detection, which processes images in the 
BGR (Blue Green Red) format, the conversion back to RGB is necessary for the image is to 
be displayed properly since RGB is the natural format in which humans see colours.   

 

4.2.2 Detect key points using mediapipe 
 

After the frame is collected from the webcam it undergoes two processes with the latter 
transforming the frame to include the visual displays of the key points and their 
connecting lines, before it is showed to the user. The first transformation involves passing 
the frame through the mediapipe holistic model to detect the key points in the frame.  

 

 
Figure 14: mediapipe holistic key point detection code snippet 

 

A function called mediapipe_detection was created within the vision_class to perform the 
operation. The holistic model and the frame are passed into the function. First a colour 
conversion is done because mediapipe uses the BGR colour format on the frame passed 
into the function. Secondly, the writeable property of the frame is set to false to ensure 
the frame is not altered as it passes through the mediapipe holistic model. After 
processing the writeable flags of the frame are then set back to True and returned along 
with the results of the detection.  

  

4.2.3 Drawing of landmarks 
 

A function called draw_styled_landmarks was created to perform the operation of 
drawing the key points and connecting lines to the frame.  
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Figure 15: code snippet to draw the landmarks 

 

As seen from the figure above the frame and the results from the mediapipe landmark 
detection function are passed into this function. Since the writeable flag of the frame is 
already set to true the mediapipe draw_landmarks function can write to the image 
transforming the image. Only the pose, left and right-hand landmarks are drawn to the 
image. Within the mediapipe draw_landmarks function the colour, thickness, circle radius 
can be modified to any preference. The drawing of the landmarks to the frame helps with 
not only understanding how mediapipe works but also helps in the data collection process 
because the hands can be positioned properly in real time when signing to make sure the 
data extracted is correct. 

 

4.2.4 Dataset generation 
 

 
Figure 16:code for dataset generation 
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Several loops were used, the first is for the number of alphabets to be collected, second 
for the number of sequences which is 60 in this case, last for the number of frames per 
sequence, each used to control the number of times the data collection process will run 
for the alphabet, sequence, and number of frames respectively. A collection was also 
used to restrict the number of alphabets that can be collected at a time to reduce the 
strain of the data collection process. The Braimah class function extract_datapoints was 
used to extract the landmarks for pose, left and right hands and concatenate them into a 
single NumPy array. The class function save_keypoints was implemented to write the 
extracted NumPy arrays to their corresponding frame number under the current sequence 
number of the sequence for loop. To make it clear during the data generation phase text 
showing the alphabet the data is being collected for and the corresponding number in the 
sequence is displayed using method OpenCV putText() is utilized. Persisting the storage 
of the dataset has several benefits aside the obvious storage for later use, another 
important reason is during model evaluation phase after evaluating the False negatives of 
the alphabets it is easy to regenerate the data of the alphabets with a lot of False 
negatives without having to regenerate the data for all alphabets  

 

4.2.5 Extract datapoints 
 

This step is a very important step as it is responsible extracting the pose, left and right-
hand landmarks and converting them to a NumPy array which is used to trin the model.  

 

 
Figure 17: code snippet for mediapipe key point extraction 

 

The result from the mediapipe detection model is passed into this function with the 
variable name frame_results. The pose landmarks unlike the left and right-hand 
landmarks have 4 variables x, y, z and visibility property. The mediapipe pose landmark 
has 33 key points, the multiplication of these 4 variables with these key points makes 132 
as seen in the figure above. The flatten property is used to convert the 2D array to 1D 
array. The if else is used to check if the landmark is captured if not zeros are generated 
in the place of the data. This is necessary during training because whatever key points 
captured by the mediapipe holistic model can be inputted in the spaces the zeros occupy. 
The same process is done for the landmarks of both hands. In total each hand landmark 
has 21 key points as earlier stated and those 21 key points are multiplied by the x, y, z 
variables of each key point to make 63 points which is then multiplied by 2 to give 126. 
After concatenation of all landmarks into a single array it totals at 258. Each frame will 
have a NumPy array with 258 values. The resulting NumPy array is then returned.  
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4.2.6 Create folders 
 

To store the data generated from the video frames during the data collection process a 
file system needed to be created. A folder was created for each Alphabet and each 
alphabet had several folders according to the number of sequences. Each sequence has 
30 NumPy files named 0 – 29 with each file representing the 30 frames captured for that 
sequence   

 

 
Figure 18: code snippet for creating folders 

 

The figure above shows how the folders were created. The python os library in 
combination with for loops were used in the creation of the folders. 

 

 4.1.7 save key points 
 

The function named save_keypoints was created to save the extracted NumPy files from 
their corresponding video frames to the dataset directories. Due to the frequency of use 
the @staticmethod keyword was used to mark the function which makes the function 
class independent and saves it to the Random Access Memory (RAM) rather than the heap 
memory of the computer for faster access.  

 

 
Figure 19:code snippet for the save_keypoints function 

 

The data path, alphabet, sequence number, frame number and the NumPy array 
developed from the extract_keypoints were passed into the function. Again the python 
library OS with its path.join function was used to generate a path that generated path is 
then passed to the NumPy.save function together with the key points array, the function 
writes the key points to the directory path.  

 

4.2.8 Data pre-processing 
 

After the data for all the alphabets had been generated and saved to their corresponding 
files in the dataset directories, they needed to be loaded back into memory and arranged 
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in a structured format before they could be used for training. The figures below show the 
routines created to perform this task.  

 

 
Figure 20: code snippet for alphabet dictionary creation 

 

The figure above shows the creation of a dictionary named label_map which uses the 
selected alphabets as keys and their respective positions in the selected_actions list as 
values.   

 

 
Figure 21: code snippet or loading files 

 

The sequences and labels list created was used to store the data read from the dataset 
directories. 3 for loops were implemented, the first to loop through the list of the 
selected alphabets, the second for looping through the length of the sequences while the 
last from frame length. The same process used for storing was also used reading back into 
memory. The NumPy library with the NumPy.Load function was used to load the files 
corresponding to the 30 frames for the 60 sequences of their respective alphabets. The 
result of the loaded NumPy file is assigned to variable res and then appended to the list 
labelled window which is then appended the list variable called sequences. At the end of 
the second for loop the integer value of the corresponding action from the label 
dictionary is also appended to a separate list named labels which is used to create the y 
training data. 

 

The next step in the data pre-processing was to convert the list named sequences which 
contains all the data into a NumPy array as shown in the figure below. The shape of the 
new array was also checked.  

 

 
Figure 22: code snippet for X values creation 

 

The X data had 1260 records which is 60 sequences by 20 alphabets plus the “.” Label 
making 21 labels. Each record has 30 arrays and each of those 30 has 258 numbers.  
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To create the y data the list named labels was used to generate an array of categorical 
data of ones and zeros. This is necessary not to create bias during the training process as 
integers can be interpreted as having an ordered significance. In this case it also suitable 
because the predictions returned by the neural networks are probability distributions 
enabled by the SoftMax activation function in the last dense layer of the neural network’s 
configuration.  

 

 
Figure 23: code snippet for Y data creation 

 

This was done with the help of the to_categorical functions from the keras.utils library. 

 

The next step was to split the data into training and test data. This was implemented 
using the train_test_split function from the sklearn.model_selction library.  

 

 
Figure 24: code snippet for dataset splitting 

 

The dataset was split with 90% for training and 10% for test data this is done because 
another 10% of the training data was also used for validation accuracy during training 
making a total of 19% of the data used for testing.  

   

4.2.9 model building and training 
 

Several models were trained using the generated data to see which one has the best 
performance in terms of accuracy in real time. These models included LSTM, GRU, 
1DConvo from the Keras library and random forest classifier from the scikit-learn library 
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4.2.10 GRU 
 

 
Figure 25: GRU Model instantiation 

 
After several iterations of the layers the current configuration in the figure above was 
used which struck a balance between model complexity and speed. This was needed to 
make the GRU capable of coping with real time prediction and to make sure the neural 
network does not become too deep because the activation function used in the LSTM 
outputs a value between 0 and 1 which means the model can stop learning if too deep 
which can lead to vanishing gradient. The figure above also shows the format in which 
the GRU model was built. The sequential model had 3 GRU model layers and 3 dense 
layers. The first and third layers had 200 units while the second layer had 400. The 
preceding layers are made up of dense layers with the first having 125 units, the second 
having 64 units while the last dense layer has a number according to the number of 
categories to be classified. The activation functions used for the GRU layers was tanh 
because tanh can take advantage of the presence of the Nvidia GPU CUDA cores present 
in the system used for training which reduces the time needed for training by over 80-90 
percent. The dense layers except the third one uses a Rectified linear unit (ReLU) 
activation function which outputs a value between -1 and 1. It is less computationally 
intensive than tanh and all the drawbacks of the vanishing gradient problem in deep 
neural network is completely removed. The last layer uses a Softmax activation function 
which converts a vector of numbers into a probability distribution which means the 
certainty in which a model classifies a label can be checked in real time. During training 
in deep learning the network parameters like weights and learning rate needs to be 
modified to minimize the loss function therefore an optimization function is needed to 
make this happen. The adam optimizer is used because it requires less computational 
time and less parameter to tune, it also gives a good probability of getting the best 
results. The loss function categorical cross entropy is used because of the multiple classes 
present in the data. The metric used to evaluate the model is categorical accuracy. To 
make sure the model did not overfit a 20% dropout was introduced in each GRU layer and 
a 10% dropout was introduced in the dense layers. This randomly freezes the specified 
percentage of nodes in the layers.  
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4.2.11 LSTM 
 

For the LSTM model when set with the same configuration with the GRU model failed to 
learn during training so a less shallow configuration was used but it still gave a good 
performance.  

 

 

 
The first 2 layers of the sequential model are LSTM layers with 150 units each. A dropout 
rate of 10% was used because of the small number of units used in the layers. The next 3 
layers are dense layers with the first dense layer having 100 units, the second with 62 
units while the last has the same number of units as the labels to be classified. All other 
configurations for the dense layer are the same with the configuration in the GRU model.  

 

The LSTM had lower training parameters than the GRU because of the lower number units 
per layer  

 

4.2.12 CONV1D 
 

 
Figure 26: code snippet for CONV1D build 

 

The 1D CNN when built with similar configuration to the LSTM and GRU performed very 
poorly in the real time test. 2 layers of the 1D CNN followed by a dropout layer is used. 
The 2 layers are then flattened after a pool_size of 2 is added. The pool layer added is 
responsible for down sampling the features in the data because the model is very 
sensitive to the positions of the features.  
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4.2.13 Graphical user interface 
 

The graphical user interface is a simple interface built using the streamlit frame it 
consists 

 

 
Figure 27: code snippets for loading models into the GUI environment 

 

The mediapipe holistic model is loaded into memory and the threshold for prediction is 
set. The specified actions to be predicted are also created. The page configuration for 
streamlit is instantiated with its title and layout. All models for both pose and non-pose 
are loaded into memory using the Keras library.   

 

4.2.13.1 Description 
 

 
Figure 28: Gui description 
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1. The side bar has 2 options select model and select pose positions so the user can 
pick whatever combinations of the 2 configurations to use. 

2. The area with the picture shows the frame in real time and it is the region in 
which all BSL signs will be performed.  

3. The area just below the image is where the recognized signs will be outputted and 
where sentence formation will occur 

 

4.2.13.2 Detection  
 

 A different approach was taken with the detection using the GUI because it had to 
accommodate multiple models for the real time pose and non-pose BSL recognition 
detection.  

 

 
Figure 29: detection logic for pose and non-pose 

 

If and else approach is used to determine the right model to use and if the pose or non-
pose method had been selected by the user. The prediction is then checked to see if it 
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reaches the specified threshold if it does it is appended to the sentence list passed into 
the function. If the prediction is “dot” or “space” the characters “.” and empty space 
are appended to the sentence list respectively.  

 

4.2.13.3 Program flow 
 

The figure below shows the how the program flow takes place and how the components 
within the GUI were initialized and used. 

 

 
Figure 30: code snippet for program flow 
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In the main function of the python script hosing the GUI code OpenCV is used to start the 
capturing of the video and each frame is passed into mediapipe holistic model so 
landmark detection can be made. The result is then used to check if hands are in the 
frame. If no hands are in the frame the list used to house the frames that will used for 
prediction is cleared and the count variable returned to zero. There are two benefits to 
this, one is the data passed into the model for prediction will be a sign that has been 
formed by the user and not something random. Secondly, it helps with the jittering 
because if a sign jitters to the point where no hand is detected it starts the data 
collection process all over again which ensures the right data has been passed to the 
model increasing the chances of having the right prediction. After the detection process 
is done, the frame is then used to update the image property of the Streamlit image class 
that was instantiated. If there is no heavy interruption to the point where the hands 
aren’t detected in the signing process the frames are constantly processed and the count 
property updated until the number reaches 30 where it will be passed into the detection 
function. The detection function returns the prediction and if the prediction is the full 
stop character. The Sentence collection is popped, and the list is then converted to a 
string and passed to the instance of the pyttsx3 library used for text to speech 
translation. The sentence list is then cleared along with the output text so the process 
can start all over again. Since the program was built in a way where the detection can 
use both pose or just the right- and left-hand landmarks the pose_choice property is 
passed to all the functions that are used in the process. 

  

4.2.14 Model evaluation 
 
The LSTM and GRU models can both be used for classification and regression but in this 
case, they were used for classification therefore they were evaluated using classification 
evaluation methods. A simple but effective approach is using the classification report 
which includes accuracy, precision, recall, F1 score and support.  
 

 
Figure 31: code snippet for classification report 

The function multiple_confusion_matrix was used to display the confusion matrix of each 
label.  
 

 
Figure 32: code snippet for multiple confusion matrix 

The accuracy was calculated using the accuracy_score library from the sklearn.metrics 
library.  

 

 
Figure 33: code snippet for accuracy score 

Having the confusion matrix output in the format shown in the figure below might seem 
hard to read so the seaborn library was used to plot the multiple confusion matrix for the 
individual classes. 
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Figure 34:code snippet to print multiple confusion matrix 

The function above was used to generate the heatmap using the seaborn library after the 
multiple confusion matrix was converted to a Pandas data frame with the alphabets as 
index and class names. The title with y and x labels were then set accordingly. 
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Chapter 5  
 

5.1 Chapter overview 
 
This chapter has 3 tables showing results. The first table shows the models and their respective 
accuracy on both test data and in real time testing using pose and hand landmarks for prediction. 
The Second Table like first table shows the accuracy data but without the use of pose landmarks. 
The third table shows the optimal result from this work in comparison with previous works using 
mediapipe indicating if real testing was done or not. The tables are followed by training 
visualizations and classification reports screen shots for the 6 models with each model in their own 
subheading. The confusion matrix plots was not added to this section but rather to the section B of 
the appendix section because of their very large sizes. 
 

5.2 Result 
 
Two methods were used to develop the models so there are total of 6 models. 3 using 
pose estimation and 3 without. The results are grouped accordingly and a table 
comparing result of this work to other related works using mediapipe is also done. 
 

Model Accuracy % Real time Accuracy % 

LSTM 97.6 67.8 

GRU 99.3 82.1 

CONV1D 98.2 67.8 
Figure 35: Result using pose estimation 

The table above shows results for the models when pose landmarks in combination with 
the left- and right-hand landmarks were used for training. LSTM having an accuracy on 
97.6% on test data and 67.8% in real time testing. GRU has 99.3% on test data and 82.1% 
in real time testing.  
 

Model Accuracy % Real time Accuracy % 

LSTM 98.8 82.1 

GRU 99.4 85.7 

CONV1D 97.2 75 
Figure 36: Result without pose estimation 

The table above shows the results reached by the model when just left- and right-hand 
landmarks were used for training. LSTM with had an accuracy of 98.8% on the test data 
and 82.1% in real time testing. GRU reached an accuracy of 99.4 on the test data and a 
real time accuracy of 85.7% While the CONV1D had a 97.2% accuracy on test data and a 
real time of 78.5%.  
 

Study Real time 
testing 

language Accuracy % 

D. BISHT et al., 
2022 

yes ASL and few 
ISL words 

94.58(real time) 

V. H. IYER et 
al., 2022. 

yes N/A 87.5 
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M. H. ISMAIL, S. 
A. DAWWD and 
F. H. ALI, 2021. 

no ARSL 99.03 

A. CHAIKAEW, 
K. SOMKUAN 
and T. YUYEN, 
2021. 

no Thai sign 
language 

97 

S. ADHIKARY, A. 
K. TALUKDAR 

yes ISL 97.4 

This work yes BSL 92.6(real time) 

Figure 37: Results of comparative studies 

The table above itemizes the performance of the different models used by different 
researchers using the media pipe holistic model to extract the data used for 
classification.  
 

5.3 Results for the Model Evaluation  
 

5.3.1 GRU 

 

 
Figure 38: GRU pose loss plot 

 
The figure above shows the GRU loss versus validation loss plot for the pose in 
combination with the hand landmark training. 
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Figure 39: GRU pose classification report 

The figure above shows the classification report for the GRU model using both pose and 
hand landmarks for detection 

 
 
 

 
Figure 40: GRU no pose classification report 

The figure above shows the classification report for the GRU model using just hand landmarks for 
the detection process. 
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5.3.2 LSTM 
 

 
Figure 41: LSTM pose loss plot 

 
The figure above shows the loss versus validation loss training graph for the LSTM model 
using both pose and hand landmarks for detection. 
 
 

 
Figure 42:LSTM pose classification report 

The figure above shows the classification report for the LSTM model using both pose and 
hand landmarks for detection. 
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Figure 43: LSTM loss plot no pose 

The figure above shows the loss versus validation loss training graph for the LSTM model 
using just hand landmarks for detection. 
 

 

 
Figure 44: LSTM no pose classification report 

 
The figure above shows the classification report for the LSTM model using just hand 
landmarks for detection. 
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Figure 45: LSTM validation loss vs validation accuracy graph 

The figure above shows the validation loss versus validation accuracy for the LSTM model 
using just hand landmarks for detection. 

 
 

5.3.3 CONV1D 
 

 
Figure 46: CONV1D loss plot no pose 

The training plot of CONV1D with using just the hand landmarks for detection  
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Figure 47: classification report for CONV1D using the hand landmarks 

The figure above shows the classification report for the CONV1D model using just the 
hand landmarks for detection. 
 

 

 
Figure 48: Training plot for CONV1D using pose 

The figure above shows the training plot for the CONV1D using pose and hand landmarks 
for detection.  
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Figure 49: validation loss versus validation accuracy for CONV1D 

The figure above shows the plot for validation loss versus validation accuracy for CONV1D 
using pose and hand landmarks for detection.  
 

 
Figure 50:classification report for CONV1D using pose and hand landmarks for prediction 
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Table 1: Real time label recognition Table 

Labels GRU 
+ 
Pose 

GRU 
+ No 
Pose 

LSTM 
+ 
Pose 

LSTM 
+ No 
Pose 

CONV1D 
+ Pose 

CONV1D 
+ No 
Pose 

Average 
likelihood 
of model 
detection 
% 

A Yes Yes Yes Yes Yes Yes 100 
B Yes Yes Yes Yes Yes Yes 100 

C Yes Yes Yes Yes Yes Yes 100 

D Yes Yes Yes Yes Yes Yes 100 

E Yes Yes Yes Yes Yes Yes 100 
F Yes Yes Yes Yes Yes Yes 100 

G Yes Yes No Yes Yes Yes 83.5 

H No Yes No Yes No Yes 50.1 

I No Yes No Yes No No 33.4 

J Yes No Yes No No No 33.4 

K Yes Yes No Yes Yes Yes 83.5 

L Yes Yes Yes Yes Yes Yes 100 

M No Yes No No No Yes 16.7 
N No Yes No No No No 16.7 

O Yes Yes No No No Yes 50.1 
P Yes Yes No Yes No Yes 66.8 

Q Yes Yes Yes Yes Yes Yes 100 

R Yes Yes Yes Yes Yes Yes 100 
S Yes Yes Yes Yes Yes Yes 100 

T Yes Yes Yes Yes Yes Yes 100 

U Yes Yes Yes Yes Yes Yes 100 

V Yes No No Yes Yes No 50.1 

W No Yes Yes Yes Yes Yes 83.5 
X Yes No Yes No No Yes 50.1 

Y Yes Yes Yes Yes Yes No 83.5 

Z Yes No Yes Yes Yes No 66.8 

. Yes Yes Yes Yes No No 66.8 

space Yes Yes Yes Yes Yes Yes 100 

Total 
= 28 

23 24 19 23 19 21  

 

 

5.4 Discussion 
 
The results from sub section 5.1 shows that GRU performed the best in real time testing 
achieving an accuracy of 85.7% when only the hand landmarks were used for detection. 
The real time detection with pose was not far behind with 82.1%.  
 
(M. H. ISMAIL, S. A. DAWWD and F. H. ALI, 2021.) achieved a 99.03% on the ARSL dataset 
but did not test in real time. Given the challenges with mediapipe jittering it will be 
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beneficial to see some real time test with the generated data and not just on test data. 
This study achieved a maximum accuracy of 99.3% with the GRU on test data using pose 
in combination with the hand landmarks but had a real time accuracy of 82.1%. 
 
(D. BISHT et al., 2022) achieved the best result using two hands in real time test, but this 
was for just 6 gestures introduced into the study from ISL and not on a full two-hand sign 
language dataset like the one used in this study. The study also implemented some 
important features like speech to text and text to speech with the auto correct feature 
for words which is vital to commercial useability.  
 
(A. CHAIKAEW, K. SOMKUAN and T. YUYEN, 2021) achieved a 97% on the test data for 6 
ISL gestures in real time. This study does better in the aspect of two hand signing 
because using similar approach achieved a 92.6 % accuracy in real time on the full BSL 
dataset with 2 extra labels making a total of 28.  
 
(S. ADHIKARY, A. K. TALUKDAR) achieved a 97.4% accuracy in ISL recognition using just 11 
gestures. The result from the confusion matrix was hard to interpret because of the type 
of confusion matrix plot used and the amount of data per class was not specified.  
 
(V. H. IYER et al., 2022.) used mediapipe to build a gesture recognition system on three 
distinct gestures and achieved a real time accuracy of 87.5% which is inadequate given 
how distinct the signs are and the number of classes used. 
 
This work achieved a better result on full datasets than any of the study done so far. The 
BSL system developed is capable of both static and dynamic sign language recognition. 
This work also gives a good real time accuracy on both the pose and non-pose methods 
and shows that both have their strengths and weaknesses as can be seen from the Table 
showing the real time accuracy. The average of each label recognized across the 6 
models is taken to give the percentage likelihood of that label being recognized in real 
time. Any label having over 80% have a very good likelihood of being detected in real 
time. M and N performed the worst with just a 16.7% chance of being recognized because 
of how similar the signs are. J is a dynamic language and did not seem to be recognized 
when the model trained to detect with just the hand landmarks were used, but dynamic 
gestures created for “.” and space character had no such problems.  
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Chapter 5 
 

5.1 Summary 
 
A suitable dataset was gotten from the university college London and used as a baseline 
to generate the data used to train the deep learning models. The generated data was 
stored in a structured file system as explained in sub section 3.1.1. The data was then 
pre-processed as explained in sub section 4.1.8. The various models were trained and 
evaluated after each training using test data and real time testing. Two methods were 
used to develop models using pose in combination with hand landmarks and just hand 
landmarks. A graphical user interface was built and used to perform the model inference 
as that gives practicality to the work. After extensive testing the results showed that GRU 
slightly outperformed LSTM and CONV1D in real time testing and had a better 
generalization capability in this instance. The result also showed that sign language 
recognition without pose landmarks performed better overall although not without its 
limitations. The proposed method was able to detect both static and dynamic sign 
languages in the BSL dataset.  
 
 

5.2 Conclusion 
 
This study born out of the need to bridge the communication gap between the public and 
BSL signers with severe hearing loss using artificial intelligence, achieved its aim. All 
objectives set out at the beginning of the study were achieved and more. The study also 
proved that it is possible to develop a truly scalable BSL recognition system by merging 
Google mediapipe framework and deep learning. During the study two viable ways using 
the mediapipe framework was used and they can both be used to accomplish BSL sign 
language recognition given more data and time. The study also showed some of the 
challenges with the mediapipe landmark detection system and how it might affect the 
data collection process and real time testing. This work answered the research question 
and proved that using a Vision based AI system the communication gap between the deaf-
mute community of BSL signers and the public can be bridged. 
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Limitations 
 
 The are several limitations in the system and model developed and they have been 
itemized below 
 

1. Generating the data using media pipe can create a lot of noise in the data because 
of the flickering and there is not any known way to clean the data like in normal 
machine learning process.  
 

2. Because of the flickering the real time testing trails behind the test data accuracy 
due to the type of data generated. 

 
3. Letters like L, M, N, V, O, I, U having similar signs cannot be predicted with 

certainty because of the flickering during real time testing.  
 

4. Not enough data is used in the training process. 
 

5. A sign was not developed for “delete” meaning a label cannot be deleted from the 
sentence during sentence formation even if it is wrong.  

 
6. Sign for C in the BSL dataset and the sign developed for “.” are often confused 

during real time testing when models using both pose and hand landmarks were 
used. 
 

7. BSL recognition using just hand landmarks for recognition will work well in 
fingerspelling but have real limitations when the pose plays a key factor which is 
more real-world scenario. A simple example of that is the sign for brown that 
requires the palm be rubbed on the arms. Without pose estimation it will be 
impossible to detect that.  

 

Recommendations/Future work 
 
Looking back several steps could have been done differently, new methods and 
algorithms tried. This would have helped improve the quality of the data and models 
generated. 
 

1. Restructure the data during the pre-processing step to make it digestible by 
machine learning algorithms like SVM and random forest classifier for static sign 
language recognition as the study is structured towards both static and dynamic 
SLR as the latter is a time series analysis which non-linear models cannot handle. 
  

2. The method of data generation process by taking pictures that are of high 
resolution and passing them through the mediapipe landmark detection model can 
be tried to help reduce the flickering problem.  
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3. Try to classify signs into static dynamic and no sign before any classification 
process as done by (M. H. ISMAIL, S. A. DAWWD and F. H. ALI, 2021. 
 

4. Generate more data that can be used for training to make the model more robust 
and increase the generalization ability.  
 

5. Generate data that includes more of the landmark key points as this study takes 
only the arms and shoulders. This will help the model more adaptable to real world 
situations. 
 

6. Build a smartphone app that can be used to test the model in a real-world scenario 
and check scalability 
 

7. Try an increase in the number of frames used in prediction in real time and train 
the model accordingly which might increase the accuracy in real time as shown by 
(D. BISHT et al., 2022), this approach might take a longer time for the model to 
predict but with advances in the processing power of devices that challenge can be 
easily overcome in the future. 
 

8. From the results in the real time result table the alphabets that have below 80% in 
the average prediction across all model can benefit from better data collection. 
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Appendix 
 

Section A Ethics Application form 
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Section B: Evaluation figures 
 

 
Figure 51:confusion matrix for pose LSTM 
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Figure 52: LSTM confusion matrix without pose 
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Figure 53: confusion matrix for pose GRU 
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Figure 54: confusion matrix for non-pose GRU 
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Figure 55: confusion matrix for CONV1D no pose 
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Figure 56:confusion matrix for CONV1D using pose and hand landmarks for prediction 
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Figure 57: training parameters for  conv1D no pose 

 
Figure 58: GRU parameters 
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Figure 59:LSTM training parameters 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

68 | P a g e  
 

Section C: Entire code for implementation 
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