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Abstract 

Society must always keep pace with the development of science. Due to the recent advances 

in surveillance technology, especially in the field of deep learning, the concept of smart cities 

is closer to be realized than ever. An important aspect of smart cities is smart traffic light 

control system that can keep up with the enormous increase of vehicles. Also, these systems 

are necessary as more autonomous cars are produced. The work in this thesis proposes a system 

that uses deep learning to control traffic light systems to enable smart cities. The system uses 

deep learning-based object detection in order to detect different types of vehicles on busy 

intersection. A YOLOv4-tiny model is trained using Darknet framework in Google Colab. The 

detector achieved a mAP accuracy of 95.6%. The dataset used in this research is the BIT-vehicles 

public dataset, that includes six classes of vehicles taken in different times during day and 

night. The model is then be implemented on PYNQZ2 FPGA. This development board from Xilinx 

support python coding through jupyter notebook.The board also has the capability to be 

connected to a real-time camera to feed the system with live input from different busy 

intersections. Depending on the result of the detector, the traffic light system can be 

controlled. When objects are detected, the light is turned red while turning the opposite side’s 

light to green. This way a car does not have to wait at a red light when there is no object 

coming from the other direction. Implementing such smart system can reduce traffic jams at 

busy intersections. As a result, saving time and resources in cities.The work presented an AI-

optimised solution that is cheap to implement on FPGAs and it does not involve extra hardware 

devices such as a computer or a radar system. This can also play a key role in improving mobility 

and reducing waiting time as well as the emissions caused by polluting gases. 
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1  Introduction 
 

 

Traffic jams caused by inefficient traffic signal control are a prevalent issue in big 

cities and busy intersections. While cars are stuck in traffic for hours, greenhouse gas 

emission increases air pollution. Also, it is estimated that this delay causes the United 

States economy to lose approximately 87 billion dollars annually (Weforum, 2018). 

Therefore, it is necessary to have a system that makes the traffic signals control smart, 

especially since most cities are advancing towards a smart city concept. 

Transportation experts predict smart traffic signals are necessary for the operation of 

autonomous driving cars. Cities must adapt their infrastructure to withstand the 

increased number of vehicles on the road. The cost of fuel and time due to traffic 

congestion was estimated to be around 78 billion dollars in 2005, and 2.9 billion extra 

gas gallons were bought just because of traffic in the United States (Texas A&M 

Transportation Institute). A new study in Hampshire, United Kingdom, predicted that 

using smart traffic systems based on real-time data will save 205 Million Metric Tons 

(MMT) from global emissions by 2027, nearly double today’s 145.7 MMT (Juniper 

Research, 2022). Many cities are increasingly adopting smart intersections. It is 

estimated that the investment into smart intersections will reach 10.2 billion by 2027 

from 5.7 in 2022. 

Researchers state that the air pollution we inhale from traffic leads to an average of 

60 -70 asthma conditions (Cambridge University, 2005). Multiple solutions have been 

proposed over the past two decades to mitigate these risks. The smart signal system is 

the most common suggestion since it constantly monitors traffic to reach a smoother 

vehicle flow. Such system implements artificial intelligence, smart cameras, radars, 

and sensor decoders into traffic infrastructure. In Pennsylvania, researchers started 

their Surtrac traffic control pilot system using real-time sensors that get their 

information from a software integration/API. They then create an optimization plan 

and act accordingly by sending commands to the controller to coordinate the signals 

(Smith et al., 2013). Others, such as Tal Kreisler and Uriel Katz, developed technology 

in Tel Aviv called” Plug and Play”, which uses Virtual Management Center (VMC) in the 

cloud combined with human eye-level sensors installed at each intersection around the 

city. The software costs 20,000 dollars per intersection. However, sensor data was 

largely limited to highways and primary roads because the sensors were typically 
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installed only on the most heavily travelled or traffic-prone routes. Google Maps used 

traffic layers to combine data from cars using GPS to be sent back as a coloured line. 

 

Convolutional Neural Networks (CNN) architecture differs from standard Neutral 

Networks (Frank Emmert-Streib et al., 2020). It replaces the use of neurons connection 

between layers; instead of continuous fully connected neurons in neural networks, CNN 

decreases the number of parameters within each layer by making convolutional layers 

that are not all connected to neurons in the next layer. CNN can have one or many of 

these convolutional layers (Frank Emmert Streib et al., 2020). It is a special type of 

neural network that is designed to process images and videos. The convolution process 

is basically choosing a filter with a known size and a task, for example, a 7*7 filter for 

edge detection and having this filter convolve over the image pixel by pixel. In terms 

of image processing, it has proven to be highly accurate as well as quick with analysis 

and image feature extraction. Width, height, and depth combine to create a matrix 

that can pass a CNN so the structure will always be preserved. (Y. LeCun and Y. Bengio 

1995) The core building of CNNs is the convolutional layers (Yann LeCun, Yoshua 

Bengio, and Geoffrey Hinton, 2015). All these layers are responsible for detecting the 

patterns inside the image when filters are applied, such as the kernel containing the 

image pixels. The dot product of these filters is the convolution which will enable the 

network to learn from low-level features such as lines and edges, then high-level 

features for the objects in deeper layers like faces. As a result, this mechanism will 

reduce the tasks of feature extraction development. 

 

1.1 Objectives and Problem Statement 

Multiple technologies, including thermal cameras, radars, lasers, and sensor detectors, 

have been used in traffic lights to detect vehicles and reduce congestion. However, 

the mentioned technologies are still struggling to adapt to the rapidly increasing 

number of cars on the road. Deep learning emerged as an effective and accurate tool 

for object detection, enabling it to be used in automating traffic light signals. The 

most famous deep learning algorithms require powerful hardware, such as GPUs, to be 

trained and run in real time. One possible solution to fill this gap is to deploy a lighter 

version of the deep learning detection model in an FPGA. That way, it does not need 

a computer to run. When the FPGA is connected to a smart camera, it can be mounted 

on traffic lights to make them ’smart’. 
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The smart city concept has been used very widely recently. The proposed system aims 

to make traffic lights smart based on detecting cars using the deep learning model. 

The model can be trained using a public annotated cars dataset to detect cars, people, 

and bikes. The Tiny YOLOv3 tiny is a smaller version of YOLOv3 that can be 

implemented in FPGA (AlexeyAB). 

The FPGA can then be connected to a smart camera already deployed in most 

intersections. When the system detects a car, person, or bike, the signal should be 

changed to red while having the opposite road’s signal turn green. The system could 

cut the time cars wait when the signal is red and no cars are passing from the opposite 

side. 

The majority of the work done within this area involves using complex and expensive 

hardware such as radar and sensor networks in order to automate the signals. However, 

none of the systems took advantage of deep learning which can optimize this problem 

rather than the existing methods in terms of multi-class and has the highest detection 

accuracy such as the Tiny YOLOv4. In addition, this detection algorithm has the 

advantage of fast real-time processing, which is necessary for our problem. The 

proposed system can be deployed in busy intersections to automate the traffic signal 

based on the results of detecting objects, which makes moving cars’ flow more 

efficient. 

The work in this thesis investigates the following research question: How can deep 

learning based object detection, implemented in FPGA, make traffic light control systems smart in 

order to reduce traffic congestion? 

 

2  

Background  
 

Smart Traffic Systems (STS) Recently, different technologies have been used for traffic 

lights system other than the traditional controller. The rapid increase in the number 

of vehicles has led to major problems in distinct areas, such as the negative 

environmental effect. The increased number of vehicles in traffic increased the carbon 

emission levels from the engines, directly polluting the environment (George Milev, 

Astley Hastings and Amin Al-Habaibeh, 2019). 

When the English railway manager John Peake (J. P. Knight) invented the first manual 

traffic light system on railway signal lights in 1868, the main purpose was to reduce 
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the number of accidents on the road. Then, in the 1960s, smart traffic lights came into 

the picture when computer technology started modernising. The goal of developing 

traffic systems has always been to improve traffic flow by detecting and reducing 

congestion by adding intelligent sensors. These sensors and technologies are integrated 

into highways to manage traffic in real-time by collecting, processing, and analysing 

traffic information. Examples of these advanced traffic management systems are 

(Aryaomnitalk, 2020) and (Trafiksol, 2018). The advances in Artificial Intelligence (AI) 

and the use of deep learning made the use of real-time data possible in these systems. 

Advanced Traffic Management Systems (ATMS) use real-time data compared to 

historical data trends to create a relationship that supports predictions based on AI 

algorithms (Swarco). In order to achieve the concept of smart cities, the EU commission 

evaluation depends on four major areas: buildings, electricity, cooling/heating 

systems, and transportation (Vito Albino, Umberto Berardi and Rosa Maria Dangelico, 

2015). Deep learning makes it possible to process a huge amount of real-time traffic 

data quickly and accurately (Mahashreveta Choudhary, 2019) described the smart 

traffic light system’s importance in smart city initiatives. They highlighted the 

importance of intelligent transport system application and that it is not limited to 

congestion but can also be used to improve the efficiency and safety of the roads. The 

National Highway Transportation Authority (NHTSA) reports found that more than 

40,000 people died in 2016 in the United States due to traffic crashes, with half a 

trillion dollars in annual expenditures from traffic congestion. 

Another benefit of the traffic safety improvement and green applications include gas 

and energy minimisation (Rekor, 2022) raised 2.3 million dollars in funding in Silicon 

Valley to help cities optimise traffic management systems relying on instant access to 

predictive analytics. All the discussed analysis highlights the significance of the traffic 

congestion management problem and its impact on the future of our cities, especially 

after the (United Nations, 2018) reports about the dramatic increase of population in 

urban areas by 68 % in 2050. 

 

2.1  Object detection 

 

Object detection is a well-studied topic in computer vision. Traditional computer vision 

algorithms depend on human-defined shapes and angles that determine how accurately 

the features can be extracted. The emergence of deep learning and Convolutional 
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Neural Networks (CNNs) effectively changed the way of object detection to produce 

more meaningful results by learning complex features of objects with remarkable 

accuracy compared to traditional algorithms (LeCun et al., 1989). For example, if a 

human looks at a photo, its objects can be automatically recognised by the human 

brain in a matter of seconds. The same concept applies to object detection in deep 

learning when the neural networks replicate this kind of intelligence. 

Object detection can be implemented in smart traffic systems by detecting cars, bikes, 

and pedestrians. The huge number of public datasets of vehicles makes it possible to 

train deep learning models to detect these classes. A fast and easy way to implement 

the real-time algorithm for object detection using deep learning is YOLOv4 Tiny. It is 

a simplified version of 7 YOLOv4 that includes only 15 convolution layers, making it 

possible to run on embedded sensors such as FPGA. The algorithm boasts high-

performance levels, fast detection, and real-time tracking (AlexeyAB). 

 

 

2.2              Deep learning in FPGA 

 

Deep learning in Field Programmable Gate Arrays (FPGAs) are integrated circuits with 

a hardware fabric. It has become an important technology in the field of AI applications 

because of its ability to run CCNs with low latency implementation and much less power 

consumption. Unlike the circuit in GPUs, the FPGA chip can be reprogrammed as 

needed. Due to this feature, FPGAs have become an excellent alternative to 

application-specific integrated circuit ASICs which are one-time programmable and 

require more time for development (Ian Kuon, R. Tessier and Jonathan Rose 2008). 

The technology industry has recently adopted FPGAs for deep learning. For instance, 

in 2010, a detailed report from Microsoft showed one of the first and most significant 

use cases of artificial intelligence with FPGAs. It has been an instrumental tool for 

accelerating web searches. FPGAs offer optimum speed, easy programmability, and 

delivery flexibility at a much lower cost than Application Specific Integrated Circuits 

(ASICs). After a while, the company relied on Microsoft’s Bing search engine to use 

FPGAs in production, and this was the best evidence of the importance of their 

application in the fields and applications of deep learning. 
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Using FPGAs to speed up search rankings, Bing achieved a massive productivity boom 

at nearly 50FPGAs, which have also been used in object detection. Researchers 

presented an implementation for a compressed YOLOv3 tiny on FPGA SoC to reduce 

the memory size by 75 percent of 104.17 FPS. Their real-time detection was about 

three times faster than the embedded GPU performance (S. Oh, J. -H. You and Y. -K. 

Kim, 2020). Their findings in the study show that FPGA is suitable for deep learning 

applications. Other example of implementing deep learning-based algorithms on FPGA 

is is presenting by (Bao et al. 2020). They used the Winograd algorithm for YOLOv2 but 

with Zynq FPGA The researchers compared their test results with the implementation 

of YOLO in a GPU and in Zynq Ultra scale+. Their proposed method has maintained 

accuracy, saved resources, and reduced power consumption on accelerating deep 

learning networks. Moreover, (E. Raze, A. Khanaev and A. Amerikanov 2021) proposed 

a smart camera connected to DE10-Nano FPGA for detecting objects on a 128×128 video 

stream by a neural network in real-time using BlueOil framework. The final test 

resulting 28.3 to 33.4 FPS rate which is efficient but not the desired accuracy. (D. 

Goshorn et al. 2010) presents a high-performance FPGA implementation of a 

generalized parts-based object detection and classifier that runs with capability of 266 

frames per second. 

 

The limitations of the discussed research are that none implement traffic light 

optimisation in smart cities. The potential of deep learning-based object detection in 

FPGA can be further investigated in order to solve the problem of traffic light control 

systems. The system we propose in this thesis is to train YOLOv3 tiny real-time object 

detection model on a CPU laptop first. Then the trained model will be deployed in 

FPGA. The FPGA is then connected to a smart camera to capture real-time frames from 

highway intersections. The proposed system will be evaluated on a prototype of a 

traffic light. The framework architecture for deep learning is Darknet (darknet), in our 

VM, such as Google Colab. A virtual FPGA can replace the FPGA hardware. The FPGA 

vision remote lab is an open educational lab based in Germany that allows researchers 

to evaluate the design remotely and provide the results from a server working on the 

FPGA board (Marco Winzker, 2022). 
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 3   Related works 
 

The use of object detection for CNNs on FPGA has been an active research area (Tu et 

al., 2019). These technologies develop deep learning inferencing with FPGAs and GPUs 

combined with real-time multimedia applications because they do not want to design 

the Xilinx Artix-7 FPGA hardware implementation. The results from their framework 

achieved faster computation and lower power consumption. (Edward, Anton and 

Aleksandr 2021) discussed the integration of the YOLOv3 tiny object detection 

algorithm on DE10-Nano FPGA board, the aim was to solve the real-time video 

streaming object recognition problem. Results of training on BlueOil framework 

showed for different objects have a good percentage of mAP = 29.4% and FPS (around 

30 frames per second with 128*128 input images) which is suitable for real-time 

applications. Limitations that they used OpenImagesV4 dataset which had 600 classes 

and a huge of tagged images (2 million), and they did not implement it on a traffic 

light system in their study. (S.Vamshi Krishna and P.Giri Prasad 2017) In their study, 

they proposed an Intelligent Transportation System (ITS) to identify traffic 

management on each road by using IR sensors to detect the traffic density implemented 

on FPGA. They managed the traffic flow using a VHDL simulator called Model Sim for 

testing the system. The system has been verified and simulated. (R. V. Kshirsagar and 

V. V. Dabahde 2015) proposed a Traffic light controller (TLC) system based on a 

microcontroller and microprocessor to minimise waiting times of vehicles at traffic 

signals. They designed a system that uses the traffic decoder sensors and the FPGA 

platform using VHDL. The system has numerous benefits over the exciting TLC and has 

been implemented effectively and evaluated in hardware (2015). (S.L.Qaddori and 

N.T.Gadawe 2020), proposed a combination of FPGA and Arduino Mega board for the 

traffic control systems. The system was programmed using VHDL for FPGA and C++ to 

programme the Arduino platform, which is used as a real-time simulator of traffic light 

systems. They concluded a comparison with the Arduino prototype model, which is 

economical, user-friendly, and works as a standalone. At the same time, the FPGA 12 

Spartan 3E platform has high security, reliability, efficiency, and great speed. (D. 

Goshorn et al. 2010) present a high-performance FPGA implementation of generalised 

parts-based object detection and classifier that runs with a capability of 266 

frames/sec. When it comes to deep learning, a dataset is an essential component in 

order to train and test the models. A set of papers works on various datasets, each of 
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which has its own features. Careful research on the importance of finding a suitable 

dataset that serves our system and what the limitations will be for not using many of 

the discussed related works. 

Researchers (S. Oh, J. -H. You and Y. -K. Kim 2020) used tiny yolov3 on FPGA for 

realtime detection, but the dataset they used for implementation is not for cars. Their 

dataset used pedestrian signal images (2020). The pedestrian signal dataset consists of 

the green signal images and the red signal images, and this is not what we are trying 

to detect. (S. Rujikietgumjorn and N. Watcharapinchai 2017), used UA-DETRAC dataset 

for RCNN architecture vehicle detection, which has similar categories to the COCO 

dataset. They use sub-classes output and pre-trained weights. These pre-trained 

weights take them directly from COCO dataset. Since the test dataset (UA-DETRAC) is 

like some categories in the COCO dataset, they used a COCO pre-trained model for 

fine-tuning the full network with UA-DETRAC dataset, which is too lengthy and does 

not have a pedestrian category.In their research (X. Li et al. 2019), proposed The 

ParallelEye Dataset, which has a large collection of virtual Images for traffic vision and 

consists of seven sub-datasets. The Pipeline for generating the ParallelEye dataset with 

OpenStreetMap, CityEngine, and Unity3D complicated it. In comparison,(M. P. 

Philipsen et al. 2015) are trained in traffic light detection, not for cars. (Z. Huo, Y. Xia 

and B. Zhang 2016), applied the EdgeBoxes algorithm and random forest classifier to 

generate candidate vehicle objects.However, the dataset is not annotated and needs 

to be reformatted with YOLOV3-TINY. 

 

(Jianxiao et al. Dec 23) propose a multi-sensor multi-level composite fusion network 

for robust multi-scale vehicle detection under variable lighting conditions, but the 

dataset availability is on request. The dataset is not publicly available now due to 

deficient maintenance capacity. Gong et al. proposed an improved yolov3-tiny 

structure which boosts the network speed by adding a series of 3 × 3 and 1 × 1 

convolutional layers to the original yolov3-tiny as well as mAP improvement by 6%. The 

experiment used a dataset called FLIR ADAS, but all the images are acquired with a 

thermal camera, and this is the reason we cannot use their dataset with our system. 

In their study,(D. T. Nguyen et al. 2019) discussed the hardware implementation for 

realtime object detection using VC707 FPGA on PASCAL VOC 2007,2012 dataset and 

tested using PASCAL VOC 2007 in CNN YOLOv2 tiny. Their work achieved 64.16 mAP 

and was cost-efficient in synthesis design. (T. Fang, X. Huang and J. Saniie 2021) 
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proposed a face mask detection using PYNQ SoC platform implementied in Zynq-7020 

SoC device. Haar cascade classifier was used as a detection algorithm in real-time 

environment.In 720P output achieved a good percentage of FPS running at 45.79 

resulting 96.5% mAP. Their detection algorithm is too old and they did not involve any 

Deep Learning techniques. 

 

Moreover, By using DL and OpenCV (a library of programming deep learning models 

aimed at realtime computer vision scenarios). (Chandan et al. 2018) present a system 

solution for real-time detection. SSD algorithm implementation with MobileNets in the 

python environment was set to detect objects in motion. The trained model is designed 

to detect 21 classes with an accuracy of 99 per cent and a considerable confidence 

level. In another study by (Z. Chen et al. 2019) they introduced a system for smart 

mobility applications such as traffic roads in two approaches. YOLO v3 and SSD have 

both been tested and compared in a traffic environment. According to their work, 

YOLOv3 is faster than SSD and performs better overall. Furthermore, the precision of 

the YOLO Algorithm is higher, especially in real-time. 

 

3.1          Computer Vision and FPGAs 

Recently, the FPGA family made an innovative technological advancement, combining 

all the necessary components for a CPU in one chip called System on Chip (SOC). This 

integration allowed the programmable logic to interact with the processing system by 

C programs. In addition, the High-Level Synthesis Tool (HLS) has been used by Xilinx in 

a platform called Vivado to accelerate C codes to a Hardware Description Language 

HDL. This means the open source computer vision library, OpenCV, can now be used in 

FPGAs. In their research, (Henrik 2015) provides a thorough description of how Vivado 

HLS works on OpenCV functions using the Zynq-7000 FPGA board. Furthermore, a 

recent study redesigned YOLOv3 tiny deep learning architecture to be deployed on 

face detection problems using the FINN framework and FINNHLS library. This includes 

the layer definitions in C++ in PYNQ-Z2, which is used as a target board for 

implementation. The study shows the accuracy difference between using a Quantised 

model such as FINN in various bit width precision with non-Quantized. The results show 

that the quantisation models led to 50 times faster detection with a tolerable accuracy 

drop than non-quantised ones (Bestami, Sefa and Hasan 2022). (M. Dhouibi, A. K. Ben 

Salem and S. B. Saoud 2020) used PYNQ on ZedBoard framework deployment for object 
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recognition. By achieving 100ms latency and up to 10 image recognitions per second 

on the CIFAR-10 dataset with 79.90 per cent accuracy, their study compared the 

performance to the software implementation on both CPU and GPU. Their findings 

proved that PYNQ is an effective solution for deep learning a wide range of embedded 

applications while remaining efficient in energy consumption. Also, (Longzhen Yu et 

al. 2022) have used PYNQZ2 FPGA board in their study to propose an efficient algorithm 

of YOLOv3 Defect Inspection based on an attention mechanism. Their experiment 

results showed that the algorithm can be deployed with high efficiency and good 

accuracy reaching 99.2%, processing speed reached 1.54 Frames per Second (FPS), as 

well as very low power consumption.
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4 Theory 
 

After having the pilot experiments dealing with the YOLOv3 Tiny object detection 

algorithm, the model desired accuracy was not achieved after many tries. However, 

the YOLOv4 Tiny version had a faster processing speed with better accuracy (around 7 

per cent) and is 10£ more than the older version with 12£ FPS. The architecture of 

YOLOv4 has four blocks: (Backbone, Neck, Dense Prediction and Sparse Prediction). 

Following these distinct blocks, the backbone for this version is the Cross-Spatial -

Partial CSPDarknet53, which has the ability to split the current layer into two parts, 

one will pass through the convolutional layers, and the other won’t. Then the results 

will be aggregated before they pass to the Neck block. The Neck is responsible for 

adding layers between the backbone and Dense Prediction block by using the Path 

aggregation technique and pyramid pooling to improve the accuracy. The Dense 

Prediction block is considered the head of this algorithm. The primary role of this block 

is to locate the bounding boxes for the classification process. The bounding boxes are 

(x, y, height, width) coordinates. This will divide the input into grids, and the 

prediction of each grid cell contains an object by using anchor boxes to provide an 

output with probabilities of the class vector with the bounding box. Many other 

techniques are used internally in YOLOv4 algorithm, such as bag of specials and bag of 

freebies. 

 These are responsible for improving the accuracy during and after the training of the 

model. The interface time is not increased during the training process when the 

algorithm uses bag of freebies. However, the bag of specials minimally increases the 

interface time and changes the architecture of the model by using two special 

techniques. The first is mish activation and cross-stage partial connections. The second 

is the bag of specials for detection, which uses the SPP block, the SAM block, and 

others. According to research conducted by Byung-Gil Han et al., results for training 

the newer version are not the same. From the first try, the YOLOv4 tiny algorithm 

achieves a greater accuracy percentage with the same interface time running on a 

GPU. 
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4.1 Image classification 

Many image classifications predict objects in images by training a multi-label classifier 

which will be responsible for predicting classes for any object inside these images. 

After the classification process (if the class is known), the location of an object will be 

determined using the Localisation method. If not, the (object class is not known), then 

the model should predict not only the location but also the class for each object. This 

process is called object detection. Multi-class object detection problems occur when 

multiple objects are inside a single image. The most used state-of-the-art 

methodologies to train object detectors are these methods which use CNNs and deep 

learning. 

4.1.1 Region-based Convolutional Neural Networks(R-CNN) 

 

Convolutional neural network-based classifiers were first used in the RCNN algorithm 

instead of HOG-based classifiers, where the success calculated the accuracy of the 

classification. RCNN used an algorithm called selective search to solve the problem of 

object detection by reducing the number of bounding boxes that fed the classifier to 

region proposals to generate all the possible locations for an object inside an image. 

And then, fed these boxes to the CNN classifier with fixed size 224*224 followed by 

SVM to predict the class for each patch and optimise these patches by training bounding 

boxes separately.
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4.1.2 You Only Look Once 

For YOLO, detection is a simple regression problem which takes an input image and 

learns the class probabilities and bounding box coordinates. This makes it become a 

prevalent choice for object detection problems. YOLO divides each image into a grid 

of S x S, and each grid predicts N bounding boxes and confidence. The confidence 

reflects the accuracy of the bounding box and whether the bounding box contains an 

object (regardless of class). YOLO also predicts the classification score for each box 

for every class in training. Both classes can be combined to calculate the probability 

of each class being present in a predicted box. So, total S x S x N boxes are predicted. 

However, most of these boxes have low confidence scores and if we set a threshold, 

say 30% confidence. This unique structure makes this algorithm much faster than the 

aforementioned network structures. To improve accuracy and speed of detection, 

YOLO author proposed YOLOv2, which replaces the fully connected layer with a 

conventional layer. In 2018 for further improvements, YOLOv3 was released. In the 

YOLOv3 model, 35 convolutional layers are used for feature extraction inside the 

DarkNet-53 backbone. Then, YOLOv3 was used as the head network for YOLOv4. 

YOLOv4 replace the previous backbone with some extra features by using a modified 

version called CSPdarknet-53, where CSP cross-stage-partial connections work on the 

feature extraction separation into two parts. Inside this version, the Mish activation 

function is used (Diganta Misra 2019). 

 

Recently, YOLOv4 tiny has proposed to improve real-time performance. This network 

model is a lightweight algorithm for YOLOv4. The main difference is this model is 

designed especially to train on machines with less computing power. We can see that 

the model’s weight is around 16 megabytes. The interface speed on YOLOv4 tiny is 3 

ms tested on Tesla P100, making it one of the fastest object detection algorithms. 

CSPdarknet-53 backbone uses this version’s three residual modules from 29 compressed 

convolutional layers, and the leaky ReLU is used as the activation function. This 

network uses two detection heads for classification and regression of the prediction, 

which means YOLOv4 has relatively competitive results compared with YOLOv4 due to 

the size reduction. The COCO dataset achieves 40 mAP with fewer anchor boxes for 

prediction. All the above facts clarify the power of this detection system and why it 
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sets the high water mark for object detection. YOLOv4 tiny is considered a better 

option, especially in a real-time object detection environment, as fast interface time 

is more important in our experiment than accuracy or precision. 

DarkNet Model conversion 

After we trained the model using the Darknet framework and obtained the required 

accuracy and speed, we had to convert the workflow to a Tensorflow environment. 

The next step requires executing on the FPGA board and running the model using 

Python. There are multiple ways to convert the model to a Tensorflow environment so 

that it can be implemented on the PYNQ board and compatible with Python. There are 

some helpful scripts for this in the Keras-YOLOv3 repository (David, 2022). Using 

Conda, the code has been successfully converted to the new framework and tested on 

more than one image. The default version of Python of the PYNQ latest image is 3.8. 

We did the model conversion beforehand. 

 

4.2        PYNQ Development Board 

 

PYNQ board is an open-source software framework designed around Xilinx Zynq SoC 

with A9 dual-core processor and FPGA. The board is designed to work on any computing 

platform and operating system. First, we tried to use the virtual lab for our hardware 

implementation. However, the limitation when running our experiment is that a 

YOLOv4- tiny DarkNet trained model was difficult to convert to a design language that 

every FPGA use, such as VHDL. 

There are many alternative solutions to use in order to avoid the complexity of using 

other programming languages. One of these ways is PYNQ software. PYNQ is the first 

system that combines a high-level productivity language with FPGA overlays. The key 

advantage is that the overlay supports Python APIs and offers an alternative compiling 

prototype environment for designing and programming embedded processes without 

using other logic circuit design tools. 

On the other hand, this version of Xilinx offers adopted a web-based architecture, 

which means PYNQ can incorporate an open-source infrastructure called Jupyter 

notebook framework to run Python kernel directly on the ARM processor. Also, the web 

server can access the kernel with many tools such as bash terminal and code editor. 
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This python-based approach for hardware control will be extremely useful to 

implement on our model by changing our used environment from DarkNet to 

Tensorflow, which has a broader scope. Thanks to Trinh Hong Trieu, all DarkNet models 

can now be converted to Tensorflow custom neural network framework and installed 

on the Windows environment. The development board below TUL PYNQ – Z2 Basic Kit, 

Zynq SoC has been ordered from Zynq official Spenser in Europe, Farnell UK company. 

PYNQ-Z2 FPGA-based platform belongs to the ZYNQ XC7Z020 FPGA family (Xilinx, 

2022). 

The board provides an HDMI In and Out, a mini display port out and 4 USB downstream 

ports. These features are essential for applications like ours to interface with images 

or cameras that can be connected to them. More information about the PYNQ project 

can be found at (Louise Crockett et al. 2019). PYNQ uses Jupyter notebook portal as 

an interactive computing environment, enabling users to author notebook documents 

that include the code, Images and Videos. 9090 is a port used by Jupyter servers to 

connect a terminal. With Jupyter web application, we can easily edit and run the code 

in the browser, which PYNQ associates with IPython kernel that runs Python code. 

(PYNQ 2018). 

 

4.2.1    Pynq Image 

PYNQ image is a pre-compiled bootable Linux image that includes the PYNQ Python 

required libraries, packages, and other open-source packages. To port the PYNQ image 

on a Zynq Device such as PYNQ-Z2, an SD card needs to be modified and adjusted to 

run Linux (Ubuntu 18.04) on the ARM core processor v2.7.0. After installation, this 

image will create the Zynq BOOT.bin, the u-boot bootloader, the Linux device tree 

blob, and the Linux kernel. 

The following elements are a summary for the main reasons behind choosing PYNQ 

board: 

• The use of Python as high-level productivity language. 

• Python libraries exposed as FPGA overlays with extensive APIs. 

• Embedded processors to serve web-based architecture, and 

• The use of Jupyter Notebook framework deployed in an embedded context. 
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4.2.2  Overlays 

An overlay is a term for hardware system that is programmed into and forms part of 

the processing logic PL. The hardware layer of the PYNQ framework. we can use 

existing overlays which are available on PYNQ project community directly to the board 

or by modifying or developing our own custom overlays. The most powerful part of 

overlays as opposed to regular bitstreams is their ability to interact with hardware 

designs from an existing Python code that will be running in a Jupyter notebook on a 

processing system. The PYNQ project creates a sample overlay. We used the Base 

overlay that contained logic to communicate with all external peripheral interfaces on 

the board. such as USB camera as an input device and HDMI out for display output. 

These connected interfaces may include switches, buttons,LEDs or audio connectors, 

Also there is a headers for for the Raspberry Pi, and Arduino within the board. 

Moreover, an additional component called a trace buffer which help the users send 

and receive signals by passing it through an external pins to be analysed and debug 

(PYNQ 2018). 

 

4.2.3 Jupyter Notebook Interactivity 

Jupyter Notebook is an open-source web application that lets us create codes 

containing inside the board using IPython project which can include visualisations. One 

of the most interesting aspects of Jupyter notebooks is being interactive. That means 

we can edit our code inside a web browser and integrate real-time viewing into their 

notebooks, Also, there are buttons to act as interactive widgets. viewing a web page 

from an external websites is also possible inside this environment. This makes it easy 

to modify any aspect of the code, redo it and provide results. This feature is also 

supported by the PYNQZ2 board even more interactivity is possible, this is because the 

Jupyter notebook contains interactivity aspects with the internal design components 

on its processing logic. This also include hardware implementation, that helps to run 

YOLOv4 Tiny algorithm. 
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4.2.4  Why OpenCV 

To differentiate between Python and the other programming languages and why we 

chose this method in our implementation. First, the OpenCv library is one of the best 

open-source libraries which perform computer vision tasks. It is based on C++ functions 

and has Python bindings, providing faster execution time compared with MATLAB. For 

example, the implementation companies Java and C++. Moreover, there is a wide range 

of resources provided for image processing. The library has ’more than 2500 optimised 

open-source algorithms without licensing requirements. OpenCV is used in this project 

as it allows us to do the next step for the hardware implementation in the FPGA 

platform. (OpenCV, 2022), (Alberto Fernandez Villan, 2019), (Beyeler, 2017). 

Several studies make use of this library in deep learning algorithms. (G. Chandan et al. 

2018) used the SSD object detection algorithm to develop a python program 

implemented in OpenCV for the detection and tracking of a real-time video sequence. 

The model showed good results for 21 trained classes with an accuracy of 99 per cent. 

They concluded that it could be deployed in CCTV and surveillance systems. Another 

architecture used for the classification problem is MobileNetV2, which has been used 

with OpenCV Deep Neural Network (DNN) module and Tensorflow to classify faces for 

those who wear masks in real-time public areas (G. Harriat Christa et al., 2021) and 

(Nagrath et al., 2021). 

 

 

4.3   Detection Evaluation 

The evaluation metric used for the deep learning model is mean Average Precision 

(mAP) (Shivy Yohanandan). Specifically, the Pascal VOC 2010–2012 (Mark Everingham 

2012), which samples a curve at all precision and recall values. The mAP is then 

calculated as the exact area under the precision-recall curve (AUC). 

To determine whether a prediction is correct or not, Intersection over Union (IoU) is 

used. It is defined as the ratio of the overlap between the predicted and ground truth 

bounding box to the union of the two boxes. The objectness (confidence) score is the 

network’s confidence that an object exists in the given box. A prediction is True 

Positive (TP) if: its objectness score is greater than or equal to some confidence 

threshold, the predicted class matches the class of the ground truth, and the IoU with 
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ground truth is greater than or equal to the defined IoU threshold. A prediction is False 

Positive (FP) if either of the latter two conditions is not true. 

 

Precision is the percentage of TF among all predictions, and recall is the percentage 

of TF among the ground truths. The mAP metric in the Pascal VOC 2010–2012 

interpolates all the points to calculate the AUC of the precision-recall curve. By 

default, the IoU threshold in this calculation is 0.5. Mathematically, 

 

 

 

 

where FP and FN are false positives and false negatives, respectively. 
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5   Methodology 
 

Our proposed system is to control traffic lights using deep learning-based object 

detection. A public annotated dataset is used to train a deep learning model to detect 

different classes of vehicles. The neural network we used is YOLO-tiny because of its 

ability to be implemented in FPGAs. The model can be trained using a virtual GPU or 

normal CPU. 

 

The first step after the pilot study that was conducted earlier was upgrading the model 

with the same algorithm. YOLOv4-tiny is the updated version of our used model and 

has considerable improvements related to speed in real-time detection, promising 

accuracy and minimum loss. Also, FPS during real-time processing with YOLOv4-tiny on 

different hardware. YOLOv4-tiny ran much faster than the YOLOv4 model. We can see 

that the algorithm’s processing with non-optimised weights was too slow for a real-

world implementation. (Naeem Ayoub 2021) (Pavel Laptev et al. 2022) have more in 

detail comparison between Deep learning and YOLO types results in real-time object 

detection. FPS of YOLOv3-tiny and YOLOv4-tiny models on different image scales 

during real-time detection with optimised weights. 

 

We train the YOLOv4-tiny on Google Colab, which is a free notebook that runs on a 

cloud server. It does not require any setup and the file is very easy to edit, just like 

google docs. The most important thing is that Colab supports many deep learning 

libraries. This makes it easier to import the data set, train the image classier, and 

evaluate the results (GoogleColab). 
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Figure 5.0.1: Anchors for used for the YOLOv4-tiny configuration file 

The training set we used for the YOLOv4-tiny model consisted of 8865 images and 985 

for validation. The dataset used is described in section 5.2. The network configuration 

includes number of hyper parameters that we adjust throughout multiple training trials 

to optimize their values. These include the following parameters: batch size, 

subdivision, network resolution, and anchors. These parameters are set as: batch size: 

64, sub-division: 16, height and width: 608, and max batch: 12000. As the dataset has 

six class, the number of filters before each of the three YOLO layers is set to 33. The 

anchors were defined based of the sizes of the objects in the dataset. In figure 5.0.2 

are the six defined anchors. 

The training process took around 10 hours. The YOLO network does a random resize at 

different iteration during training to ensure the model learns from different image 

sizes. The figure below shows random re sizes of images to ensure the increase of 

model robustness. 

After multiple training, the desired detection accuracy measured by mAP (section 4.3) 

was achieved. Using the validation set, the best mAP value was 95.6%. The next step 

in our experiment is to set up the PYNQ board and install the required dependencies 

in order to run our model in Python. 
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Figure 5.0.2: Random input images resize during training 

 

5.1  SOFTWARE IMPLEMENTATION 

 

The process of the software implementation was quite challenging. The training phase 

which resulted both the .weights and .confg files for YOLOv4 tiny model which are 

supported by C language as we use Darknet as a framework. The FPGA implementation 

step was supposed to be done virtually using an open-source education lab based in 

Germany. Due to time limitations and the complexity of building the entire neural 

network using VHDL, this option was not possible. PYNQ-Z2, an alternative FPGA board 

that supports python was the next option, figure 5.1.1. 



Student No. Q15691110  
 

22 
 

 

Figure 5.1.1: PYNQ-Z2 development board 

 

5.1.1 PYNQ-Z2 board 

The PYNQ-Z2 board is integrated with the dual-core ARM A9 processor. This makes the 

system design we aim to implement to be more efficient. PYNQ platform uses overlays 

which are included by default in the PYNQ image. The base overlay (Python 

productivity for PYNQ) is the one which supports the Python language, especially the 

OpenCV library, and includes multiple programmable logic circuits that can be called 

by the ARM core to be used as APIs (Pynq, 2018). 

This PYNQ system functionality is very useful for users with no FPGA experience to 

interact with the board and all its I/O as it contains many features such as the video 

pipeline. PYNQ video pipeline is a module that uses IP blocks real-time that can pass 

an incoming video stream and generate an output video stream by interfacing with the 

HDMI input and output ports (Andrew Elbert Wilson 2020). 
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5.1.2 Board and System Requirements Setup 

Following the official guide from PYNQ, first all jumpers should be set up and the board 

should be connected the LAN. The following steps were followed in order to set up the 

board: 

• We used the official pynq image to be installed on the micro-SD card, running on 

latest version 2.7. It comes with the PYNQ Python supported libraries package. 

• Tera Term desktop application was used as a terminal for pynq servers to 

configure the board. 

 SOFTWARE IMPLEMENTATION: 

• The required libraries to be installed to the board are OpenCV-Contrib, Numpy 

and Matplotlib. However, the OpenCV-Contrib was not supported by the current 

version of python 3.8, so we had to downgrade the python version to 3.7 by 

building it from the source with the help of virtual environment. 

• PYNQ overlays was very helpful to act as interfaces especially Video pipeline and 

the 

Base overlay. Also buffer and frame configurations were done for the HDMI ports 

and USB camera. 

After setting up the board, the detector can be run in python. The Deep Neural 

Networks (dnn module) from OpenCV supports has YOLO-tiny implementation. The 

coding done to run the detector is described in detail in the artifact folder attached 

with the thesis. 

To sum up our experimental set up, we trained the CNN model with the BITVehicle 

dataset in the Darknet framework. After the training, the .weight and .cfg are used for 

detection in PYNQ framework to perform using testing frames and an input test video. 

This step is done on a remote Jupyter notebook connected to the PYNQ FPGA web 

server. The inference was performed on a dual hardcore of the PYNQ board booted 

from a 32 GB SD card. 
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5.1.3 Implementation Challenges 

Various challenges and limitations occurred regarding how to amend the code and find 

alternative functions that work with the Jupyter notebook. Moreover, installing the 

required libraries that the framework supports was not an easy task. PYNQz2 Xilinx 

project version runs with 32bit-bit dual-core ARM Cortex-A9 on it.So, one of the 

limitations faced was to downgrade the existing Python version of the PYNQ image 

from 3.8 to 3.7 to install OpenCV-Contrib 4.5.5 specialised module, which is an 

additional library that supports DNN functions. This stage took many hours to compile 

the library from the source and add it to the board. We also need to set them to point 

to the virtual environment libraries of the same type. moreover, HDMI Interface The 

PYNQ does not support the full HDMI protocol but supports the DVI protocol over the 

HDMI pins. The HDMI interface within the static logic uses IP blocks developed by 

Digilent and Xilinx to convert the DVI protocol to the VGA protocol and then finally to 

the AXI4- Stream protocol. Because the HDMI out clock was sourced from the HDMI in 

the clock and it may vary in speed more often, the HDMI output requires a working 

HDMI input which is not used in our experiment (Andrew Elbert Wilson 2020). 

 

5.2      Datasets 

An important aspect of the deep learning training process is choosing the dataset. 

Datasets affect the model accuracy and enormously. The bigger the dataset is, the 

more samples the network have to learn from and hence a more accurate model. We 

used two datasets to train two different YOLO-tiny models. The first is dataset 1, which 

was used during the pilot study to train the YOLOv3-tiny. As that dataset gave very low 

accuracy, we investigated available public annotated datasets. Therefore, for the 

YOLOv4-tiny model, we used dataset 2. A description of the two datasets is included 

below. 

5.2.1 Dataset 1 

This dataset is public and is published on a GitHub repo (Maryam Boneh, 2022) with 

YOLO format annotation is necessary for our training and evaluation. It included 

different angle views such as front and back with day/night views. This dataset consists 
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of a total of 1376 images in five different classes: Car, Motorcycle, Truck, Bus, and 

Bicycle. It also contains the annotation files for each image in YOLO format. 

5.2.2 Dataset 2 

The Beijing Institute of Technology Vehicle Dataset (BIT-Vehicle) is a public annotated 

dataset that is available for traffic surveillance purposes and can work in complex 

scenes (Dong et al., 2015). We used this dataset to train the YOLOv4-tiny model. This 

dataset consists of 9580 vehicle images. There are six classes of vehicles which are: 

Sedan, SUV, Microbus, Truck, Bus, and Minivan. The number of objects in each class is 

5922, 1392, 883, 822, 558, and 476, accordingly. The dataset includes daytime and 

nighttime images gathered from traffic monitoring cameras. The images were taken in 

different weather conditions, which makes them more robust. 

Studies in the literature have used this inclusive dataset. In (Z. Dong et al. 2015), the 

authors used a CNN for vehicle type classification using the BIT-Vehicle dataset. Their 

network achieved an accuracy of 88.11%. The vehicle type classification method used 

a semi-supervised architecture model consisting of two stages, each including 

convolution, non-linearity, absolute rectification, normalisation, and pooling. These 

fully connected stages and the output predict the six vehicle classes. 

Also, (Max N. Roecker et al. 2018) proposed an automatic vehicle type classification 

method using CNN on the same dataset. This classification model has 93.90% detection 

accuracy. 

Furthermore, the work in (Jun Sang et al. 2018) proposed an improved model called 

YOLOv2Vehicle by improving the YOLOv2 algorithm to obtain better anchor boxes using 

the K-means clustering. Their experiment accuracy result is 94.78% using the same 

dataset. The study proved their method is effective for vehicle detection and has good 

feature extraction ability. 

(M. A. Hedeya, A. H. Eid and R. F. Abdel-Kader 2020) Developed an ensemble of three 

deep neural network models for vehicle type classification. The networks are 

ResNet50, Xception, and DenseNet. Ensemble learning aims to supervise multiple 

models’ strengths and weaknesses, leading to better classification. They used the BIT-

Vehicle dataset to verify their results which were 97.6%. All the discussed work above 

used the same surveillance dataset for Vehicle Detection and Classification. However, 

none developed the model to be implemented in FPGAs.



 

26 
 

 

6     Discussion and Results 
 

 

The work proposed in this thesis aims to perform object detection based on deep 

learning to automate the traffic control process in smart cities. In the pilot study part 

of our work, a YOLOv3-tiny-based model was trained using dataset 1. That dataset was 

not big enough to train a deep learning model. The training dataset consisted of 1196 

images to train, 125 for validation with five different classes as follows: Car, 

Motorcycle, Truck, Bus, and Bicycle. Therefore, the result of that model was bad. The 

detection accuracy measured by mAP for the validation set using the best training 

weights was only 32%, after 10000 iterations. Figure 6.0.1 below shows the mAP curve 

in red and the iteration curve in blue. Figure 6.0.2 illustrates the accuracy per class, 

along with the True Positive (TP) and False Positive (FP). We can see the accuracy is 

very low for all the classes, meaning the model missed detecting the objects. 

 

As the main purpose of our pilot study was to investigate the research and overcome 

the problems we faced at that phase, that model needed to be improved. Therefore, 

we trained a new model using a new dataset, dataset 2. The YOLOv4-tiny has been 

proven to have higher accuracy than the YOLOv3-tiny . Moreover, we needed a bigger 

dataset as we have five different classes of vehicles to detect. Deep learning requires 

a significant amount of data to achieve high detection accuracy. Not to mention the 

angle of the frames and day/night vision. 
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Figure 6.0.1: mAP accuracy of the YOLOv3-tiny model, trained on dataset 1 

 

Figure 6.0.2: YOLOv3-tiny mAP accuracy per class using dataset 1 

Dataset 1 was the only available public option, but it did not give the desired outcome 

in terms of accuracy. The result from the pilot study concluded that the real time 
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object detection requires more investigation in terms of choosing a compatible model 

with the FPGA and a good dataset. 

 

 

Figure 6.0.3: mAP accuracy of the YOLOv4-tiny model, trained on dataset 2 

Therefore, a new model of YOLOv4-tiny was trained using 9000 objects divided into six 

classes. The model was tested using a validation set of 988 objects. The resulted accuracy 

measured by mAP was 95.6%, which is a big improvement. Figure 6.0.3 shows the mAP over 

6700 iteration. Also, figure 6.0.4 shows the accuracy per class for the validation dataset. 

We tested the model on both, image frames from the validation set and a short video. In 

figure 6.0.5 is an example of detection of random images from the validation set. All the 

vehicles were correctly detected including the night view frames. After Installing the 

required libraries detailed in the artifact (readme.txt), such as python, opecv-contib, DNN, 

and matplotlib into the PYNQ-z2 board, the darknet model was then used for detection 

through Jupyter notebook. The detector was run from the board and tested using testing 

images, such as in figure 6.0.5. Also, our python implementation in the board gives the 

option to run the detector using video feed and stream from a connected camera through 
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HDMI. However, when the frame rate was low when the camera was connected (6 FPS). This 

is due the limitation of the used RAM, which is 32. 

 

Figure 6.0.4: YOLOv4-tiny mAP accuracy per class using dataset 2 

 

Figure 6.0.5: Detection Examples of YOLOv4-tiny model  
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7  Conclusion 
 

 

Many cities around the world are in the process of making themselves smart. This 

means integrating the use of data and advanced technology to improve different 

aspects such as transport, energy use, and air quality to drive economic growth. The 

investigation done in this thesis is to answer the main research question of whether it 

is possible to implement deep learning algorithms into an FPGA to improve traffic 

management systems, with a focus on the concept of smart cities. Our work was 

conducted in two stages, a pilot study and a research project. The pilot study 

concluded that the deep learning-based object detection model (YOLOv3-tiny) we 

trained has low accuracy. The reason for that is the dataset was very limited, and the 

network did not learn from enough samples in five separate classes. 

Therefore, in order to improve the detection accuracy, a YOLOv4-tiny neural network 

was used. The model was trained using a more versatile and inclusive public dataset. 

The detection accuracy measured by mAP was improved from 35.9% to 95.6% to detect 

six classes of vehicles. 

The model was trained in the Darknet framework using Google Colab. To implement 

the model in an FPGA board, we used a PYNQ-Z2 board from Xilinx that supports python 

coding. The board supports the Jupyter notebook environment. After installing all the 

required dependencies and libraries that support deep learning and computer vision, 

such as opencv-contrib and dnn, the darknet model was used for inference from the 

board using the python notebook. The model runs detection smoothly on testing 

frames; however, the frame rate was slow when a video was tested. Further 

investigation in future work can be done to improve the frame rate in a video sequence. 

The research and design exploration in this work concluded the possibility of 

implementing deep learning in FPGA boards toward smart traffic lights control systems. 

These boards are affordable and can be directly connected to a camera and to a traffic 

light system, which eliminates the need for a personal computer to run the object 

detector. This work can also play a key role in improving mobility and reducing waiting 

time as well as the pollution caused by emissions from cars stuck in traffic jams. 
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