

 SOLENT UNIVERSITY

 SCHOOL OF MEDIA ART AND TECHNOLOGY

MSc Computer Engineering

 A Master’s Thesis in

Smart Traffic Light Controller Towards Smart Cities

September 2022

HASAN ALQAYSI

 Supervisor: Dr. Olufemi Isiaq

This report is submitted in fulfilment of the requirements of Solent University for the

degree of MSc Computer Engineering.

ii

Abstract

Society must always keep pace with the development of science. Due to the recent advances

in surveillance technology, especially in the field of deep learning, the concept of smart cities

is closer to be realized than ever. An important aspect of smart cities is smart traffic light

control system that can keep up with the enormous increase of vehicles. Also, these systems

are necessary as more autonomous cars are produced. The work in this thesis proposes a system

that uses deep learning to control traffic light systems to enable smart cities. The system uses

deep learning-based object detection in order to detect different types of vehicles on busy

intersection. A YOLOv4-tiny model is trained using Darknet framework in Google Colab. The

detector achieved a mAP accuracy of 95.6%. The dataset used in this research is the BIT-vehicles

public dataset, that includes six classes of vehicles taken in different times during day and

night. The model is then be implemented on PYNQZ2 FPGA. This development board from Xilinx

support python coding through jupyter notebook.The board also has the capability to be

connected to a real-time camera to feed the system with live input from different busy

intersections. Depending on the result of the detector, the traffic light system can be

controlled. When objects are detected, the light is turned red while turning the opposite side’s

light to green. This way a car does not have to wait at a red light when there is no object

coming from the other direction. Implementing such smart system can reduce traffic jams at

busy intersections. As a result, saving time and resources in cities.The work presented an AI-

optimised solution that is cheap to implement on FPGAs and it does not involve extra hardware

devices such as a computer or a radar system. This can also play a key role in improving mobility

and reducing waiting time as well as the emissions caused by polluting gases.

iii

Contents

Abstract ... ii

Acknowledgments ... v

Acronyms……..vi

1 Introduction ... 2

1.1 Objectives and Problem Statement .. 3

2 Background... 4

2.1 Object detection ... 5

2.2 Deep learning in FPGA ... 6

3 Related works ... 8

3.1 Computer Vision and FPGAs ... 10

4 Theory... 11

4.1 Image classification ... 12

4.1.1 Region-based Convolutional Neural Networks(R-CNN) 12

4.1.2 You Only Look Once ... 13

4.2 PYNQ Development Board ... 14

4.2.1 Pynq Image ... 15

4.2.2 Overlays .. 16

4.2.3 Jupyter Notebook Interactivity ... 16

4.2.4 Why OpenCV ... 17

4.3 Detection Evaluation... 17

5 Methodology .. 19

iv

5.1 SOFTWARE IMPLEMENTATION ... 21

5.1.1 PYNQ-Z2 board ... 22

5.1.2 Board and System Requirements Setup ... 23

5.1.3 Implementation Challenges .. 24

5.2 Datasets .. 24

5.2.1 Dataset 1 .. 24

5.2.2 Dataset 2 .. 25

6 Discussion and Results .. 26

7 Conclusion ... 30

Bibliography.. 31

v

Acknowledgments

I would like to thank my Supervisor, Dr. Olufemi Isiaq for providing guidance, helpful

feedback and making me confident in my abilities throughout this project.

Acronyms

CNN Convolutional Neural Networks

GPU Graphical Processing Unit

mAP mean Average Precision

IoU Intersection over Union

TP True Positive

FP False Positive

FN False Negative

YOLO You Only Look Once

MMT Million Metric Tons

FPGA Field Programmable Gate Array

API Application Programming Interface

PYNQ Python productivity on Zynq

DVI Digital Visual Interface

ASIC Application Specific Integrated Circuit

AI Artificial Intelligence

Student No. Q15691110

2

1 Introduction

Traffic jams caused by inefficient traffic signal control are a prevalent issue in big

cities and busy intersections. While cars are stuck in traffic for hours, greenhouse gas

emission increases air pollution. Also, it is estimated that this delay causes the United

States economy to lose approximately 87 billion dollars annually (Weforum, 2018).

Therefore, it is necessary to have a system that makes the traffic signals control smart,

especially since most cities are advancing towards a smart city concept.

Transportation experts predict smart traffic signals are necessary for the operation of

autonomous driving cars. Cities must adapt their infrastructure to withstand the

increased number of vehicles on the road. The cost of fuel and time due to traffic

congestion was estimated to be around 78 billion dollars in 2005, and 2.9 billion extra

gas gallons were bought just because of traffic in the United States (Texas A&M

Transportation Institute). A new study in Hampshire, United Kingdom, predicted that

using smart traffic systems based on real-time data will save 205 Million Metric Tons

(MMT) from global emissions by 2027, nearly double today’s 145.7 MMT (Juniper

Research, 2022). Many cities are increasingly adopting smart intersections. It is

estimated that the investment into smart intersections will reach 10.2 billion by 2027

from 5.7 in 2022.

Researchers state that the air pollution we inhale from traffic leads to an average of

60 -70 asthma conditions (Cambridge University, 2005). Multiple solutions have been

proposed over the past two decades to mitigate these risks. The smart signal system is

the most common suggestion since it constantly monitors traffic to reach a smoother

vehicle flow. Such system implements artificial intelligence, smart cameras, radars,

and sensor decoders into traffic infrastructure. In Pennsylvania, researchers started

their Surtrac traffic control pilot system using real-time sensors that get their

information from a software integration/API. They then create an optimization plan

and act accordingly by sending commands to the controller to coordinate the signals

(Smith et al., 2013). Others, such as Tal Kreisler and Uriel Katz, developed technology

in Tel Aviv called” Plug and Play”, which uses Virtual Management Center (VMC) in the

cloud combined with human eye-level sensors installed at each intersection around the

city. The software costs 20,000 dollars per intersection. However, sensor data was

largely limited to highways and primary roads because the sensors were typically

Student No. Q15691110

3

installed only on the most heavily travelled or traffic-prone routes. Google Maps used

traffic layers to combine data from cars using GPS to be sent back as a coloured line.

Convolutional Neural Networks (CNN) architecture differs from standard Neutral

Networks (Frank Emmert-Streib et al., 2020). It replaces the use of neurons connection

between layers; instead of continuous fully connected neurons in neural networks, CNN

decreases the number of parameters within each layer by making convolutional layers

that are not all connected to neurons in the next layer. CNN can have one or many of

these convolutional layers (Frank Emmert Streib et al., 2020). It is a special type of

neural network that is designed to process images and videos. The convolution process

is basically choosing a filter with a known size and a task, for example, a 7*7 filter for

edge detection and having this filter convolve over the image pixel by pixel. In terms

of image processing, it has proven to be highly accurate as well as quick with analysis

and image feature extraction. Width, height, and depth combine to create a matrix

that can pass a CNN so the structure will always be preserved. (Y. LeCun and Y. Bengio

1995) The core building of CNNs is the convolutional layers (Yann LeCun, Yoshua

Bengio, and Geoffrey Hinton, 2015). All these layers are responsible for detecting the

patterns inside the image when filters are applied, such as the kernel containing the

image pixels. The dot product of these filters is the convolution which will enable the

network to learn from low-level features such as lines and edges, then high-level

features for the objects in deeper layers like faces. As a result, this mechanism will

reduce the tasks of feature extraction development.

1.1 Objectives and Problem Statement

Multiple technologies, including thermal cameras, radars, lasers, and sensor detectors,

have been used in traffic lights to detect vehicles and reduce congestion. However,

the mentioned technologies are still struggling to adapt to the rapidly increasing

number of cars on the road. Deep learning emerged as an effective and accurate tool

for object detection, enabling it to be used in automating traffic light signals. The

most famous deep learning algorithms require powerful hardware, such as GPUs, to be

trained and run in real time. One possible solution to fill this gap is to deploy a lighter

version of the deep learning detection model in an FPGA. That way, it does not need

a computer to run. When the FPGA is connected to a smart camera, it can be mounted

on traffic lights to make them ’smart’.

Student No. Q15691110

4

The smart city concept has been used very widely recently. The proposed system aims

to make traffic lights smart based on detecting cars using the deep learning model.

The model can be trained using a public annotated cars dataset to detect cars, people,

and bikes. The Tiny YOLOv3 tiny is a smaller version of YOLOv3 that can be

implemented in FPGA (AlexeyAB).

The FPGA can then be connected to a smart camera already deployed in most

intersections. When the system detects a car, person, or bike, the signal should be

changed to red while having the opposite road’s signal turn green. The system could

cut the time cars wait when the signal is red and no cars are passing from the opposite

side.

The majority of the work done within this area involves using complex and expensive

hardware such as radar and sensor networks in order to automate the signals. However,

none of the systems took advantage of deep learning which can optimize this problem

rather than the existing methods in terms of multi-class and has the highest detection

accuracy such as the Tiny YOLOv4. In addition, this detection algorithm has the

advantage of fast real-time processing, which is necessary for our problem. The

proposed system can be deployed in busy intersections to automate the traffic signal

based on the results of detecting objects, which makes moving cars’ flow more

efficient.

The work in this thesis investigates the following research question: How can deep

learning based object detection, implemented in FPGA, make traffic light control systems smart in

order to reduce traffic congestion?

2

Background

Smart Traffic Systems (STS) Recently, different technologies have been used for traffic

lights system other than the traditional controller. The rapid increase in the number

of vehicles has led to major problems in distinct areas, such as the negative

environmental effect. The increased number of vehicles in traffic increased the carbon

emission levels from the engines, directly polluting the environment (George Milev,

Astley Hastings and Amin Al-Habaibeh, 2019).

When the English railway manager John Peake (J. P. Knight) invented the first manual

traffic light system on railway signal lights in 1868, the main purpose was to reduce

Student No. Q15691110

5

the number of accidents on the road. Then, in the 1960s, smart traffic lights came into

the picture when computer technology started modernising. The goal of developing

traffic systems has always been to improve traffic flow by detecting and reducing

congestion by adding intelligent sensors. These sensors and technologies are integrated

into highways to manage traffic in real-time by collecting, processing, and analysing

traffic information. Examples of these advanced traffic management systems are

(Aryaomnitalk, 2020) and (Trafiksol, 2018). The advances in Artificial Intelligence (AI)

and the use of deep learning made the use of real-time data possible in these systems.

Advanced Traffic Management Systems (ATMS) use real-time data compared to

historical data trends to create a relationship that supports predictions based on AI

algorithms (Swarco). In order to achieve the concept of smart cities, the EU commission

evaluation depends on four major areas: buildings, electricity, cooling/heating

systems, and transportation (Vito Albino, Umberto Berardi and Rosa Maria Dangelico,

2015). Deep learning makes it possible to process a huge amount of real-time traffic

data quickly and accurately (Mahashreveta Choudhary, 2019) described the smart

traffic light system’s importance in smart city initiatives. They highlighted the

importance of intelligent transport system application and that it is not limited to

congestion but can also be used to improve the efficiency and safety of the roads. The

National Highway Transportation Authority (NHTSA) reports found that more than

40,000 people died in 2016 in the United States due to traffic crashes, with half a

trillion dollars in annual expenditures from traffic congestion.

Another benefit of the traffic safety improvement and green applications include gas

and energy minimisation (Rekor, 2022) raised 2.3 million dollars in funding in Silicon

Valley to help cities optimise traffic management systems relying on instant access to

predictive analytics. All the discussed analysis highlights the significance of the traffic

congestion management problem and its impact on the future of our cities, especially

after the (United Nations, 2018) reports about the dramatic increase of population in

urban areas by 68 % in 2050.

2.1 Object detection

Object detection is a well-studied topic in computer vision. Traditional computer vision

algorithms depend on human-defined shapes and angles that determine how accurately

the features can be extracted. The emergence of deep learning and Convolutional

Student No. Q15691110

6

Neural Networks (CNNs) effectively changed the way of object detection to produce

more meaningful results by learning complex features of objects with remarkable

accuracy compared to traditional algorithms (LeCun et al., 1989). For example, if a

human looks at a photo, its objects can be automatically recognised by the human

brain in a matter of seconds. The same concept applies to object detection in deep

learning when the neural networks replicate this kind of intelligence.

Object detection can be implemented in smart traffic systems by detecting cars, bikes,

and pedestrians. The huge number of public datasets of vehicles makes it possible to

train deep learning models to detect these classes. A fast and easy way to implement

the real-time algorithm for object detection using deep learning is YOLOv4 Tiny. It is

a simplified version of 7 YOLOv4 that includes only 15 convolution layers, making it

possible to run on embedded sensors such as FPGA. The algorithm boasts high-

performance levels, fast detection, and real-time tracking (AlexeyAB).

2.2 Deep learning in FPGA

Deep learning in Field Programmable Gate Arrays (FPGAs) are integrated circuits with

a hardware fabric. It has become an important technology in the field of AI applications

because of its ability to run CCNs with low latency implementation and much less power

consumption. Unlike the circuit in GPUs, the FPGA chip can be reprogrammed as

needed. Due to this feature, FPGAs have become an excellent alternative to

application-specific integrated circuit ASICs which are one-time programmable and

require more time for development (Ian Kuon, R. Tessier and Jonathan Rose 2008).

The technology industry has recently adopted FPGAs for deep learning. For instance,

in 2010, a detailed report from Microsoft showed one of the first and most significant

use cases of artificial intelligence with FPGAs. It has been an instrumental tool for

accelerating web searches. FPGAs offer optimum speed, easy programmability, and

delivery flexibility at a much lower cost than Application Specific Integrated Circuits

(ASICs). After a while, the company relied on Microsoft’s Bing search engine to use

FPGAs in production, and this was the best evidence of the importance of their

application in the fields and applications of deep learning.

Student No. Q15691110

7

Using FPGAs to speed up search rankings, Bing achieved a massive productivity boom

at nearly 50FPGAs, which have also been used in object detection. Researchers

presented an implementation for a compressed YOLOv3 tiny on FPGA SoC to reduce

the memory size by 75 percent of 104.17 FPS. Their real-time detection was about

three times faster than the embedded GPU performance (S. Oh, J. -H. You and Y. -K.

Kim, 2020). Their findings in the study show that FPGA is suitable for deep learning

applications. Other example of implementing deep learning-based algorithms on FPGA

is is presenting by (Bao et al. 2020). They used the Winograd algorithm for YOLOv2 but

with Zynq FPGA The researchers compared their test results with the implementation

of YOLO in a GPU and in Zynq Ultra scale+. Their proposed method has maintained

accuracy, saved resources, and reduced power consumption on accelerating deep

learning networks. Moreover, (E. Raze, A. Khanaev and A. Amerikanov 2021) proposed

a smart camera connected to DE10-Nano FPGA for detecting objects on a 128×128 video

stream by a neural network in real-time using BlueOil framework. The final test

resulting 28.3 to 33.4 FPS rate which is efficient but not the desired accuracy. (D.

Goshorn et al. 2010) presents a high-performance FPGA implementation of a

generalized parts-based object detection and classifier that runs with capability of 266

frames per second.

The limitations of the discussed research are that none implement traffic light

optimisation in smart cities. The potential of deep learning-based object detection in

FPGA can be further investigated in order to solve the problem of traffic light control

systems. The system we propose in this thesis is to train YOLOv3 tiny real-time object

detection model on a CPU laptop first. Then the trained model will be deployed in

FPGA. The FPGA is then connected to a smart camera to capture real-time frames from

highway intersections. The proposed system will be evaluated on a prototype of a

traffic light. The framework architecture for deep learning is Darknet (darknet), in our

VM, such as Google Colab. A virtual FPGA can replace the FPGA hardware. The FPGA

vision remote lab is an open educational lab based in Germany that allows researchers

to evaluate the design remotely and provide the results from a server working on the

FPGA board (Marco Winzker, 2022).

Student No. Q15691110

8

 3 Related works

The use of object detection for CNNs on FPGA has been an active research area (Tu et

al., 2019). These technologies develop deep learning inferencing with FPGAs and GPUs

combined with real-time multimedia applications because they do not want to design

the Xilinx Artix-7 FPGA hardware implementation. The results from their framework

achieved faster computation and lower power consumption. (Edward, Anton and

Aleksandr 2021) discussed the integration of the YOLOv3 tiny object detection

algorithm on DE10-Nano FPGA board, the aim was to solve the real-time video

streaming object recognition problem. Results of training on BlueOil framework

showed for different objects have a good percentage of mAP = 29.4% and FPS (around

30 frames per second with 128*128 input images) which is suitable for real-time

applications. Limitations that they used OpenImagesV4 dataset which had 600 classes

and a huge of tagged images (2 million), and they did not implement it on a traffic

light system in their study. (S.Vamshi Krishna and P.Giri Prasad 2017) In their study,

they proposed an Intelligent Transportation System (ITS) to identify traffic

management on each road by using IR sensors to detect the traffic density implemented

on FPGA. They managed the traffic flow using a VHDL simulator called Model Sim for

testing the system. The system has been verified and simulated. (R. V. Kshirsagar and

V. V. Dabahde 2015) proposed a Traffic light controller (TLC) system based on a

microcontroller and microprocessor to minimise waiting times of vehicles at traffic

signals. They designed a system that uses the traffic decoder sensors and the FPGA

platform using VHDL. The system has numerous benefits over the exciting TLC and has

been implemented effectively and evaluated in hardware (2015). (S.L.Qaddori and

N.T.Gadawe 2020), proposed a combination of FPGA and Arduino Mega board for the

traffic control systems. The system was programmed using VHDL for FPGA and C++ to

programme the Arduino platform, which is used as a real-time simulator of traffic light

systems. They concluded a comparison with the Arduino prototype model, which is

economical, user-friendly, and works as a standalone. At the same time, the FPGA 12

Spartan 3E platform has high security, reliability, efficiency, and great speed. (D.

Goshorn et al. 2010) present a high-performance FPGA implementation of generalised

parts-based object detection and classifier that runs with a capability of 266

frames/sec. When it comes to deep learning, a dataset is an essential component in

order to train and test the models. A set of papers works on various datasets, each of

Student No. Q15691110

9

which has its own features. Careful research on the importance of finding a suitable

dataset that serves our system and what the limitations will be for not using many of

the discussed related works.

Researchers (S. Oh, J. -H. You and Y. -K. Kim 2020) used tiny yolov3 on FPGA for

realtime detection, but the dataset they used for implementation is not for cars. Their

dataset used pedestrian signal images (2020). The pedestrian signal dataset consists of

the green signal images and the red signal images, and this is not what we are trying

to detect. (S. Rujikietgumjorn and N. Watcharapinchai 2017), used UA-DETRAC dataset

for RCNN architecture vehicle detection, which has similar categories to the COCO

dataset. They use sub-classes output and pre-trained weights. These pre-trained

weights take them directly from COCO dataset. Since the test dataset (UA-DETRAC) is

like some categories in the COCO dataset, they used a COCO pre-trained model for

fine-tuning the full network with UA-DETRAC dataset, which is too lengthy and does

not have a pedestrian category.In their research (X. Li et al. 2019), proposed The

ParallelEye Dataset, which has a large collection of virtual Images for traffic vision and

consists of seven sub-datasets. The Pipeline for generating the ParallelEye dataset with

OpenStreetMap, CityEngine, and Unity3D complicated it. In comparison,(M. P.

Philipsen et al. 2015) are trained in traffic light detection, not for cars. (Z. Huo, Y. Xia

and B. Zhang 2016), applied the EdgeBoxes algorithm and random forest classifier to

generate candidate vehicle objects.However, the dataset is not annotated and needs

to be reformatted with YOLOV3-TINY.

(Jianxiao et al. Dec 23) propose a multi-sensor multi-level composite fusion network

for robust multi-scale vehicle detection under variable lighting conditions, but the

dataset availability is on request. The dataset is not publicly available now due to

deficient maintenance capacity. Gong et al. proposed an improved yolov3-tiny

structure which boosts the network speed by adding a series of 3 × 3 and 1 × 1

convolutional layers to the original yolov3-tiny as well as mAP improvement by 6%. The

experiment used a dataset called FLIR ADAS, but all the images are acquired with a

thermal camera, and this is the reason we cannot use their dataset with our system.

In their study,(D. T. Nguyen et al. 2019) discussed the hardware implementation for

realtime object detection using VC707 FPGA on PASCAL VOC 2007,2012 dataset and

tested using PASCAL VOC 2007 in CNN YOLOv2 tiny. Their work achieved 64.16 mAP

and was cost-efficient in synthesis design. (T. Fang, X. Huang and J. Saniie 2021)

Student No. Q15691110

10

proposed a face mask detection using PYNQ SoC platform implementied in Zynq-7020

SoC device. Haar cascade classifier was used as a detection algorithm in real-time

environment.In 720P output achieved a good percentage of FPS running at 45.79

resulting 96.5% mAP. Their detection algorithm is too old and they did not involve any

Deep Learning techniques.

Moreover, By using DL and OpenCV (a library of programming deep learning models

aimed at realtime computer vision scenarios). (Chandan et al. 2018) present a system

solution for real-time detection. SSD algorithm implementation with MobileNets in the

python environment was set to detect objects in motion. The trained model is designed

to detect 21 classes with an accuracy of 99 per cent and a considerable confidence

level. In another study by (Z. Chen et al. 2019) they introduced a system for smart

mobility applications such as traffic roads in two approaches. YOLO v3 and SSD have

both been tested and compared in a traffic environment. According to their work,

YOLOv3 is faster than SSD and performs better overall. Furthermore, the precision of

the YOLO Algorithm is higher, especially in real-time.

3.1 Computer Vision and FPGAs

Recently, the FPGA family made an innovative technological advancement, combining

all the necessary components for a CPU in one chip called System on Chip (SOC). This

integration allowed the programmable logic to interact with the processing system by

C programs. In addition, the High-Level Synthesis Tool (HLS) has been used by Xilinx in

a platform called Vivado to accelerate C codes to a Hardware Description Language

HDL. This means the open source computer vision library, OpenCV, can now be used in

FPGAs. In their research, (Henrik 2015) provides a thorough description of how Vivado

HLS works on OpenCV functions using the Zynq-7000 FPGA board. Furthermore, a

recent study redesigned YOLOv3 tiny deep learning architecture to be deployed on

face detection problems using the FINN framework and FINNHLS library. This includes

the layer definitions in C++ in PYNQ-Z2, which is used as a target board for

implementation. The study shows the accuracy difference between using a Quantised

model such as FINN in various bit width precision with non-Quantized. The results show

that the quantisation models led to 50 times faster detection with a tolerable accuracy

drop than non-quantised ones (Bestami, Sefa and Hasan 2022). (M. Dhouibi, A. K. Ben

Salem and S. B. Saoud 2020) used PYNQ on ZedBoard framework deployment for object

Student No. Q15691110

11

recognition. By achieving 100ms latency and up to 10 image recognitions per second

on the CIFAR-10 dataset with 79.90 per cent accuracy, their study compared the

performance to the software implementation on both CPU and GPU. Their findings

proved that PYNQ is an effective solution for deep learning a wide range of embedded

applications while remaining efficient in energy consumption. Also, (Longzhen Yu et

al. 2022) have used PYNQZ2 FPGA board in their study to propose an efficient algorithm

of YOLOv3 Defect Inspection based on an attention mechanism. Their experiment

results showed that the algorithm can be deployed with high efficiency and good

accuracy reaching 99.2%, processing speed reached 1.54 Frames per Second (FPS), as

well as very low power consumption.

Student No. Q15691110

11

4 Theory

After having the pilot experiments dealing with the YOLOv3 Tiny object detection

algorithm, the model desired accuracy was not achieved after many tries. However,

the YOLOv4 Tiny version had a faster processing speed with better accuracy (around 7

per cent) and is 10£ more than the older version with 12£ FPS. The architecture of

YOLOv4 has four blocks: (Backbone, Neck, Dense Prediction and Sparse Prediction).

Following these distinct blocks, the backbone for this version is the Cross-Spatial -

Partial CSPDarknet53, which has the ability to split the current layer into two parts,

one will pass through the convolutional layers, and the other won’t. Then the results

will be aggregated before they pass to the Neck block. The Neck is responsible for

adding layers between the backbone and Dense Prediction block by using the Path

aggregation technique and pyramid pooling to improve the accuracy. The Dense

Prediction block is considered the head of this algorithm. The primary role of this block

is to locate the bounding boxes for the classification process. The bounding boxes are

(x, y, height, width) coordinates. This will divide the input into grids, and the

prediction of each grid cell contains an object by using anchor boxes to provide an

output with probabilities of the class vector with the bounding box. Many other

techniques are used internally in YOLOv4 algorithm, such as bag of specials and bag of

freebies.

 These are responsible for improving the accuracy during and after the training of the

model. The interface time is not increased during the training process when the

algorithm uses bag of freebies. However, the bag of specials minimally increases the

interface time and changes the architecture of the model by using two special

techniques. The first is mish activation and cross-stage partial connections. The second

is the bag of specials for detection, which uses the SPP block, the SAM block, and

others. According to research conducted by Byung-Gil Han et al., results for training

the newer version are not the same. From the first try, the YOLOv4 tiny algorithm

achieves a greater accuracy percentage with the same interface time running on a

GPU.

Student No. Q15691110

12

4.1 Image classification

Many image classifications predict objects in images by training a multi-label classifier

which will be responsible for predicting classes for any object inside these images.

After the classification process (if the class is known), the location of an object will be

determined using the Localisation method. If not, the (object class is not known), then

the model should predict not only the location but also the class for each object. This

process is called object detection. Multi-class object detection problems occur when

multiple objects are inside a single image. The most used state-of-the-art

methodologies to train object detectors are these methods which use CNNs and deep

learning.

4.1.1 Region-based Convolutional Neural Networks(R-CNN)

Convolutional neural network-based classifiers were first used in the RCNN algorithm

instead of HOG-based classifiers, where the success calculated the accuracy of the

classification. RCNN used an algorithm called selective search to solve the problem of

object detection by reducing the number of bounding boxes that fed the classifier to

region proposals to generate all the possible locations for an object inside an image.

And then, fed these boxes to the CNN classifier with fixed size 224*224 followed by

SVM to predict the class for each patch and optimise these patches by training bounding

boxes separately.

Student No. Q15691110

13

4.1.2 You Only Look Once

For YOLO, detection is a simple regression problem which takes an input image and

learns the class probabilities and bounding box coordinates. This makes it become a

prevalent choice for object detection problems. YOLO divides each image into a grid

of S x S, and each grid predicts N bounding boxes and confidence. The confidence

reflects the accuracy of the bounding box and whether the bounding box contains an

object (regardless of class). YOLO also predicts the classification score for each box

for every class in training. Both classes can be combined to calculate the probability

of each class being present in a predicted box. So, total S x S x N boxes are predicted.

However, most of these boxes have low confidence scores and if we set a threshold,

say 30% confidence. This unique structure makes this algorithm much faster than the

aforementioned network structures. To improve accuracy and speed of detection,

YOLO author proposed YOLOv2, which replaces the fully connected layer with a

conventional layer. In 2018 for further improvements, YOLOv3 was released. In the

YOLOv3 model, 35 convolutional layers are used for feature extraction inside the

DarkNet-53 backbone. Then, YOLOv3 was used as the head network for YOLOv4.

YOLOv4 replace the previous backbone with some extra features by using a modified

version called CSPdarknet-53, where CSP cross-stage-partial connections work on the

feature extraction separation into two parts. Inside this version, the Mish activation

function is used (Diganta Misra 2019).

Recently, YOLOv4 tiny has proposed to improve real-time performance. This network

model is a lightweight algorithm for YOLOv4. The main difference is this model is

designed especially to train on machines with less computing power. We can see that

the model’s weight is around 16 megabytes. The interface speed on YOLOv4 tiny is 3

ms tested on Tesla P100, making it one of the fastest object detection algorithms.

CSPdarknet-53 backbone uses this version’s three residual modules from 29 compressed

convolutional layers, and the leaky ReLU is used as the activation function. This

network uses two detection heads for classification and regression of the prediction,

which means YOLOv4 has relatively competitive results compared with YOLOv4 due to

the size reduction. The COCO dataset achieves 40 mAP with fewer anchor boxes for

prediction. All the above facts clarify the power of this detection system and why it

Student No. Q15691110

14

sets the high water mark for object detection. YOLOv4 tiny is considered a better

option, especially in a real-time object detection environment, as fast interface time

is more important in our experiment than accuracy or precision.

DarkNet Model conversion

After we trained the model using the Darknet framework and obtained the required

accuracy and speed, we had to convert the workflow to a Tensorflow environment.

The next step requires executing on the FPGA board and running the model using

Python. There are multiple ways to convert the model to a Tensorflow environment so

that it can be implemented on the PYNQ board and compatible with Python. There are

some helpful scripts for this in the Keras-YOLOv3 repository (David, 2022). Using

Conda, the code has been successfully converted to the new framework and tested on

more than one image. The default version of Python of the PYNQ latest image is 3.8.

We did the model conversion beforehand.

4.2 PYNQ Development Board

PYNQ board is an open-source software framework designed around Xilinx Zynq SoC

with A9 dual-core processor and FPGA. The board is designed to work on any computing

platform and operating system. First, we tried to use the virtual lab for our hardware

implementation. However, the limitation when running our experiment is that a

YOLOv4- tiny DarkNet trained model was difficult to convert to a design language that

every FPGA use, such as VHDL.

There are many alternative solutions to use in order to avoid the complexity of using

other programming languages. One of these ways is PYNQ software. PYNQ is the first

system that combines a high-level productivity language with FPGA overlays. The key

advantage is that the overlay supports Python APIs and offers an alternative compiling

prototype environment for designing and programming embedded processes without

using other logic circuit design tools.

On the other hand, this version of Xilinx offers adopted a web-based architecture,

which means PYNQ can incorporate an open-source infrastructure called Jupyter

notebook framework to run Python kernel directly on the ARM processor. Also, the web

server can access the kernel with many tools such as bash terminal and code editor.

Student No. Q15691110

15

This python-based approach for hardware control will be extremely useful to

implement on our model by changing our used environment from DarkNet to

Tensorflow, which has a broader scope. Thanks to Trinh Hong Trieu, all DarkNet models

can now be converted to Tensorflow custom neural network framework and installed

on the Windows environment. The development board below TUL PYNQ – Z2 Basic Kit,

Zynq SoC has been ordered from Zynq official Spenser in Europe, Farnell UK company.

PYNQ-Z2 FPGA-based platform belongs to the ZYNQ XC7Z020 FPGA family (Xilinx,

2022).

The board provides an HDMI In and Out, a mini display port out and 4 USB downstream

ports. These features are essential for applications like ours to interface with images

or cameras that can be connected to them. More information about the PYNQ project

can be found at (Louise Crockett et al. 2019). PYNQ uses Jupyter notebook portal as

an interactive computing environment, enabling users to author notebook documents

that include the code, Images and Videos. 9090 is a port used by Jupyter servers to

connect a terminal. With Jupyter web application, we can easily edit and run the code

in the browser, which PYNQ associates with IPython kernel that runs Python code.

(PYNQ 2018).

4.2.1 Pynq Image

PYNQ image is a pre-compiled bootable Linux image that includes the PYNQ Python

required libraries, packages, and other open-source packages. To port the PYNQ image

on a Zynq Device such as PYNQ-Z2, an SD card needs to be modified and adjusted to

run Linux (Ubuntu 18.04) on the ARM core processor v2.7.0. After installation, this

image will create the Zynq BOOT.bin, the u-boot bootloader, the Linux device tree

blob, and the Linux kernel.

The following elements are a summary for the main reasons behind choosing PYNQ

board:

• The use of Python as high-level productivity language.

• Python libraries exposed as FPGA overlays with extensive APIs.

• Embedded processors to serve web-based architecture, and

• The use of Jupyter Notebook framework deployed in an embedded context.

Student No. Q15691110

16

4.2.2 Overlays

An overlay is a term for hardware system that is programmed into and forms part of

the processing logic PL. The hardware layer of the PYNQ framework. we can use

existing overlays which are available on PYNQ project community directly to the board

or by modifying or developing our own custom overlays. The most powerful part of

overlays as opposed to regular bitstreams is their ability to interact with hardware

designs from an existing Python code that will be running in a Jupyter notebook on a

processing system. The PYNQ project creates a sample overlay. We used the Base

overlay that contained logic to communicate with all external peripheral interfaces on

the board. such as USB camera as an input device and HDMI out for display output.

These connected interfaces may include switches, buttons,LEDs or audio connectors,

Also there is a headers for for the Raspberry Pi, and Arduino within the board.

Moreover, an additional component called a trace buffer which help the users send

and receive signals by passing it through an external pins to be analysed and debug

(PYNQ 2018).

4.2.3 Jupyter Notebook Interactivity

Jupyter Notebook is an open-source web application that lets us create codes

containing inside the board using IPython project which can include visualisations. One

of the most interesting aspects of Jupyter notebooks is being interactive. That means

we can edit our code inside a web browser and integrate real-time viewing into their

notebooks, Also, there are buttons to act as interactive widgets. viewing a web page

from an external websites is also possible inside this environment. This makes it easy

to modify any aspect of the code, redo it and provide results. This feature is also

supported by the PYNQZ2 board even more interactivity is possible, this is because the

Jupyter notebook contains interactivity aspects with the internal design components

on its processing logic. This also include hardware implementation, that helps to run

YOLOv4 Tiny algorithm.

Student No. Q15691110

17

4.2.4 Why OpenCV

To differentiate between Python and the other programming languages and why we

chose this method in our implementation. First, the OpenCv library is one of the best

open-source libraries which perform computer vision tasks. It is based on C++ functions

and has Python bindings, providing faster execution time compared with MATLAB. For

example, the implementation companies Java and C++. Moreover, there is a wide range

of resources provided for image processing. The library has ’more than 2500 optimised

open-source algorithms without licensing requirements. OpenCV is used in this project

as it allows us to do the next step for the hardware implementation in the FPGA

platform. (OpenCV, 2022), (Alberto Fernandez Villan, 2019), (Beyeler, 2017).

Several studies make use of this library in deep learning algorithms. (G. Chandan et al.

2018) used the SSD object detection algorithm to develop a python program

implemented in OpenCV for the detection and tracking of a real-time video sequence.

The model showed good results for 21 trained classes with an accuracy of 99 per cent.

They concluded that it could be deployed in CCTV and surveillance systems. Another

architecture used for the classification problem is MobileNetV2, which has been used

with OpenCV Deep Neural Network (DNN) module and Tensorflow to classify faces for

those who wear masks in real-time public areas (G. Harriat Christa et al., 2021) and

(Nagrath et al., 2021).

4.3 Detection Evaluation

The evaluation metric used for the deep learning model is mean Average Precision

(mAP) (Shivy Yohanandan). Specifically, the Pascal VOC 2010–2012 (Mark Everingham

2012), which samples a curve at all precision and recall values. The mAP is then

calculated as the exact area under the precision-recall curve (AUC).

To determine whether a prediction is correct or not, Intersection over Union (IoU) is

used. It is defined as the ratio of the overlap between the predicted and ground truth

bounding box to the union of the two boxes. The objectness (confidence) score is the

network’s confidence that an object exists in the given box. A prediction is True

Positive (TP) if: its objectness score is greater than or equal to some confidence

threshold, the predicted class matches the class of the ground truth, and the IoU with

Student No. Q15691110

18

ground truth is greater than or equal to the defined IoU threshold. A prediction is False

Positive (FP) if either of the latter two conditions is not true.

Precision is the percentage of TF among all predictions, and recall is the percentage

of TF among the ground truths. The mAP metric in the Pascal VOC 2010–2012

interpolates all the points to calculate the AUC of the precision-recall curve. By

default, the IoU threshold in this calculation is 0.5. Mathematically,

where FP and FN are false positives and false negatives, respectively.

Student No. Q15691110

19

5 Methodology

Our proposed system is to control traffic lights using deep learning-based object

detection. A public annotated dataset is used to train a deep learning model to detect

different classes of vehicles. The neural network we used is YOLO-tiny because of its

ability to be implemented in FPGAs. The model can be trained using a virtual GPU or

normal CPU.

The first step after the pilot study that was conducted earlier was upgrading the model

with the same algorithm. YOLOv4-tiny is the updated version of our used model and

has considerable improvements related to speed in real-time detection, promising

accuracy and minimum loss. Also, FPS during real-time processing with YOLOv4-tiny on

different hardware. YOLOv4-tiny ran much faster than the YOLOv4 model. We can see

that the algorithm’s processing with non-optimised weights was too slow for a real-

world implementation. (Naeem Ayoub 2021) (Pavel Laptev et al. 2022) have more in

detail comparison between Deep learning and YOLO types results in real-time object

detection. FPS of YOLOv3-tiny and YOLOv4-tiny models on different image scales

during real-time detection with optimised weights.

We train the YOLOv4-tiny on Google Colab, which is a free notebook that runs on a

cloud server. It does not require any setup and the file is very easy to edit, just like

google docs. The most important thing is that Colab supports many deep learning

libraries. This makes it easier to import the data set, train the image classier, and

evaluate the results (GoogleColab).

Student No. Q15691110

20

Figure 5.0.1: Anchors for used for the YOLOv4-tiny configuration file

The training set we used for the YOLOv4-tiny model consisted of 8865 images and 985

for validation. The dataset used is described in section 5.2. The network configuration

includes number of hyper parameters that we adjust throughout multiple training trials

to optimize their values. These include the following parameters: batch size,

subdivision, network resolution, and anchors. These parameters are set as: batch size:

64, sub-division: 16, height and width: 608, and max batch: 12000. As the dataset has

six class, the number of filters before each of the three YOLO layers is set to 33. The

anchors were defined based of the sizes of the objects in the dataset. In figure 5.0.2

are the six defined anchors.

The training process took around 10 hours. The YOLO network does a random resize at

different iteration during training to ensure the model learns from different image

sizes. The figure below shows random re sizes of images to ensure the increase of

model robustness.

After multiple training, the desired detection accuracy measured by mAP (section 4.3)

was achieved. Using the validation set, the best mAP value was 95.6%. The next step

in our experiment is to set up the PYNQ board and install the required dependencies

in order to run our model in Python.

Student No. Q15691110

21

Figure 5.0.2: Random input images resize during training

5.1 SOFTWARE IMPLEMENTATION

The process of the software implementation was quite challenging. The training phase

which resulted both the .weights and .confg files for YOLOv4 tiny model which are

supported by C language as we use Darknet as a framework. The FPGA implementation

step was supposed to be done virtually using an open-source education lab based in

Germany. Due to time limitations and the complexity of building the entire neural

network using VHDL, this option was not possible. PYNQ-Z2, an alternative FPGA board

that supports python was the next option, figure 5.1.1.

Student No. Q15691110

22

Figure 5.1.1: PYNQ-Z2 development board

5.1.1 PYNQ-Z2 board

The PYNQ-Z2 board is integrated with the dual-core ARM A9 processor. This makes the

system design we aim to implement to be more efficient. PYNQ platform uses overlays

which are included by default in the PYNQ image. The base overlay (Python

productivity for PYNQ) is the one which supports the Python language, especially the

OpenCV library, and includes multiple programmable logic circuits that can be called

by the ARM core to be used as APIs (Pynq, 2018).

This PYNQ system functionality is very useful for users with no FPGA experience to

interact with the board and all its I/O as it contains many features such as the video

pipeline. PYNQ video pipeline is a module that uses IP blocks real-time that can pass

an incoming video stream and generate an output video stream by interfacing with the

HDMI input and output ports (Andrew Elbert Wilson 2020).

Student No. Q15691110

23

5.1.2 Board and System Requirements Setup

Following the official guide from PYNQ, first all jumpers should be set up and the board

should be connected the LAN. The following steps were followed in order to set up the

board:

• We used the official pynq image to be installed on the micro-SD card, running on

latest version 2.7. It comes with the PYNQ Python supported libraries package.

• Tera Term desktop application was used as a terminal for pynq servers to

configure the board.

 SOFTWARE IMPLEMENTATION:

• The required libraries to be installed to the board are OpenCV-Contrib, Numpy

and Matplotlib. However, the OpenCV-Contrib was not supported by the current

version of python 3.8, so we had to downgrade the python version to 3.7 by

building it from the source with the help of virtual environment.

• PYNQ overlays was very helpful to act as interfaces especially Video pipeline and

the

Base overlay. Also buffer and frame configurations were done for the HDMI ports

and USB camera.

After setting up the board, the detector can be run in python. The Deep Neural

Networks (dnn module) from OpenCV supports has YOLO-tiny implementation. The

coding done to run the detector is described in detail in the artifact folder attached

with the thesis.

To sum up our experimental set up, we trained the CNN model with the BITVehicle

dataset in the Darknet framework. After the training, the .weight and .cfg are used for

detection in PYNQ framework to perform using testing frames and an input test video.

This step is done on a remote Jupyter notebook connected to the PYNQ FPGA web

server. The inference was performed on a dual hardcore of the PYNQ board booted

from a 32 GB SD card.

Student No. Q15691110

24

5.1.3 Implementation Challenges

Various challenges and limitations occurred regarding how to amend the code and find

alternative functions that work with the Jupyter notebook. Moreover, installing the

required libraries that the framework supports was not an easy task. PYNQz2 Xilinx

project version runs with 32bit-bit dual-core ARM Cortex-A9 on it.So, one of the

limitations faced was to downgrade the existing Python version of the PYNQ image

from 3.8 to 3.7 to install OpenCV-Contrib 4.5.5 specialised module, which is an

additional library that supports DNN functions. This stage took many hours to compile

the library from the source and add it to the board. We also need to set them to point

to the virtual environment libraries of the same type. moreover, HDMI Interface The

PYNQ does not support the full HDMI protocol but supports the DVI protocol over the

HDMI pins. The HDMI interface within the static logic uses IP blocks developed by

Digilent and Xilinx to convert the DVI protocol to the VGA protocol and then finally to

the AXI4- Stream protocol. Because the HDMI out clock was sourced from the HDMI in

the clock and it may vary in speed more often, the HDMI output requires a working

HDMI input which is not used in our experiment (Andrew Elbert Wilson 2020).

5.2 Datasets

An important aspect of the deep learning training process is choosing the dataset.

Datasets affect the model accuracy and enormously. The bigger the dataset is, the

more samples the network have to learn from and hence a more accurate model. We

used two datasets to train two different YOLO-tiny models. The first is dataset 1, which

was used during the pilot study to train the YOLOv3-tiny. As that dataset gave very low

accuracy, we investigated available public annotated datasets. Therefore, for the

YOLOv4-tiny model, we used dataset 2. A description of the two datasets is included

below.

5.2.1 Dataset 1

This dataset is public and is published on a GitHub repo (Maryam Boneh, 2022) with

YOLO format annotation is necessary for our training and evaluation. It included

different angle views such as front and back with day/night views. This dataset consists

Student No. Q15691110

25

of a total of 1376 images in five different classes: Car, Motorcycle, Truck, Bus, and

Bicycle. It also contains the annotation files for each image in YOLO format.

5.2.2 Dataset 2

The Beijing Institute of Technology Vehicle Dataset (BIT-Vehicle) is a public annotated

dataset that is available for traffic surveillance purposes and can work in complex

scenes (Dong et al., 2015). We used this dataset to train the YOLOv4-tiny model. This

dataset consists of 9580 vehicle images. There are six classes of vehicles which are:

Sedan, SUV, Microbus, Truck, Bus, and Minivan. The number of objects in each class is

5922, 1392, 883, 822, 558, and 476, accordingly. The dataset includes daytime and

nighttime images gathered from traffic monitoring cameras. The images were taken in

different weather conditions, which makes them more robust.

Studies in the literature have used this inclusive dataset. In (Z. Dong et al. 2015), the

authors used a CNN for vehicle type classification using the BIT-Vehicle dataset. Their

network achieved an accuracy of 88.11%. The vehicle type classification method used

a semi-supervised architecture model consisting of two stages, each including

convolution, non-linearity, absolute rectification, normalisation, and pooling. These

fully connected stages and the output predict the six vehicle classes.

Also, (Max N. Roecker et al. 2018) proposed an automatic vehicle type classification

method using CNN on the same dataset. This classification model has 93.90% detection

accuracy.

Furthermore, the work in (Jun Sang et al. 2018) proposed an improved model called

YOLOv2Vehicle by improving the YOLOv2 algorithm to obtain better anchor boxes using

the K-means clustering. Their experiment accuracy result is 94.78% using the same

dataset. The study proved their method is effective for vehicle detection and has good

feature extraction ability.

(M. A. Hedeya, A. H. Eid and R. F. Abdel-Kader 2020) Developed an ensemble of three

deep neural network models for vehicle type classification. The networks are

ResNet50, Xception, and DenseNet. Ensemble learning aims to supervise multiple

models’ strengths and weaknesses, leading to better classification. They used the BIT-

Vehicle dataset to verify their results which were 97.6%. All the discussed work above

used the same surveillance dataset for Vehicle Detection and Classification. However,

none developed the model to be implemented in FPGAs.

26

6 Discussion and Results

The work proposed in this thesis aims to perform object detection based on deep

learning to automate the traffic control process in smart cities. In the pilot study part

of our work, a YOLOv3-tiny-based model was trained using dataset 1. That dataset was

not big enough to train a deep learning model. The training dataset consisted of 1196

images to train, 125 for validation with five different classes as follows: Car,

Motorcycle, Truck, Bus, and Bicycle. Therefore, the result of that model was bad. The

detection accuracy measured by mAP for the validation set using the best training

weights was only 32%, after 10000 iterations. Figure 6.0.1 below shows the mAP curve

in red and the iteration curve in blue. Figure 6.0.2 illustrates the accuracy per class,

along with the True Positive (TP) and False Positive (FP). We can see the accuracy is

very low for all the classes, meaning the model missed detecting the objects.

As the main purpose of our pilot study was to investigate the research and overcome

the problems we faced at that phase, that model needed to be improved. Therefore,

we trained a new model using a new dataset, dataset 2. The YOLOv4-tiny has been

proven to have higher accuracy than the YOLOv3-tiny . Moreover, we needed a bigger

dataset as we have five different classes of vehicles to detect. Deep learning requires

a significant amount of data to achieve high detection accuracy. Not to mention the

angle of the frames and day/night vision.

27

Figure 6.0.1: mAP accuracy of the YOLOv3-tiny model, trained on dataset 1

Figure 6.0.2: YOLOv3-tiny mAP accuracy per class using dataset 1

Dataset 1 was the only available public option, but it did not give the desired outcome

in terms of accuracy. The result from the pilot study concluded that the real time

28

object detection requires more investigation in terms of choosing a compatible model

with the FPGA and a good dataset.

Figure 6.0.3: mAP accuracy of the YOLOv4-tiny model, trained on dataset 2

Therefore, a new model of YOLOv4-tiny was trained using 9000 objects divided into six

classes. The model was tested using a validation set of 988 objects. The resulted accuracy

measured by mAP was 95.6%, which is a big improvement. Figure 6.0.3 shows the mAP over

6700 iteration. Also, figure 6.0.4 shows the accuracy per class for the validation dataset.

We tested the model on both, image frames from the validation set and a short video. In

figure 6.0.5 is an example of detection of random images from the validation set. All the

vehicles were correctly detected including the night view frames. After Installing the

required libraries detailed in the artifact (readme.txt), such as python, opecv-contib, DNN,

and matplotlib into the PYNQ-z2 board, the darknet model was then used for detection

through Jupyter notebook. The detector was run from the board and tested using testing

images, such as in figure 6.0.5. Also, our python implementation in the board gives the

option to run the detector using video feed and stream from a connected camera through

29

HDMI. However, when the frame rate was low when the camera was connected (6 FPS). This

is due the limitation of the used RAM, which is 32.

Figure 6.0.4: YOLOv4-tiny mAP accuracy per class using dataset 2

Figure 6.0.5: Detection Examples of YOLOv4-tiny model

30

7 Conclusion

Many cities around the world are in the process of making themselves smart. This

means integrating the use of data and advanced technology to improve different

aspects such as transport, energy use, and air quality to drive economic growth. The

investigation done in this thesis is to answer the main research question of whether it

is possible to implement deep learning algorithms into an FPGA to improve traffic

management systems, with a focus on the concept of smart cities. Our work was

conducted in two stages, a pilot study and a research project. The pilot study

concluded that the deep learning-based object detection model (YOLOv3-tiny) we

trained has low accuracy. The reason for that is the dataset was very limited, and the

network did not learn from enough samples in five separate classes.

Therefore, in order to improve the detection accuracy, a YOLOv4-tiny neural network

was used. The model was trained using a more versatile and inclusive public dataset.

The detection accuracy measured by mAP was improved from 35.9% to 95.6% to detect

six classes of vehicles.

The model was trained in the Darknet framework using Google Colab. To implement

the model in an FPGA board, we used a PYNQ-Z2 board from Xilinx that supports python

coding. The board supports the Jupyter notebook environment. After installing all the

required dependencies and libraries that support deep learning and computer vision,

such as opencv-contrib and dnn, the darknet model was used for inference from the

board using the python notebook. The model runs detection smoothly on testing

frames; however, the frame rate was slow when a video was tested. Further

investigation in future work can be done to improve the frame rate in a video sequence.

The research and design exploration in this work concluded the possibility of

implementing deep learning in FPGA boards toward smart traffic lights control systems.

These boards are affordable and can be directly connected to a camera and to a traffic

light system, which eliminates the need for a personal computer to run the object

detector. This work can also play a key role in improving mobility and reducing waiting

time as well as the pollution caused by emissions from cars stuck in traffic jams.

31

Bibliography

ADMIN, 2021. Microsoft uses Intel FPGA technology to achieve smarter Bing

Search Available from: https://ee-paper.com/microsoft-uses-intel-fpga-technology-to-

achieve-smarter-bing-

search/#:~:text=Microsoft%20is%20using%20FPGA%20%28field%20programmable%20gat

e%20array%29,for%20the%20performance%20of%20Bing%E2%80%99s%20intelligent%20s

earch%20function.

ADRIAN ROSEBROCK, 2017. Deep Learning with OpenCV Available

from: https://pyimagesearch.com/2017/08/21/deep-learning-with-opencv/

ALBERTO FERNANDEZ VILLAN, 2019. Mastering OpenCV 4 with Python. Packt Publishing

ALEXEYAB, Alexey repo Available from: https://github.com/AlexeyAB

ANDREW ELBERT WILSON, 2020. Dynamic Reconfigurable Real-Time Video Processing

Pipelines on

SRAM-based FPGAs, Brigham Young University

ARYAOMNITALK, 2020. Advanced

Traffic Management

System - ATMS Available from: https://aryaomnitalk.com/advanced-traffic-management-

system-atms/

BAO, C. et al., 2020. A power-efficient optimizing framework FPGA accelerator based on

winograd for YOLO. IEEE Access, 8, 94307-94317

BESTAMI, G., B.O. SEFA and S.B. HASAN, 2022. LPYOLO: Low Precision YOLO for Face

Detection on FPGA.

BEYELER, M., 2017. Machine Learning for OpenCV. Birmingham: Packt Ltd

BYUNG-GIL HAN et al., 2020. Design of a Scalable and Fast YOLO for Edge-Computing

Devices.

CAMBRIDGE UNIVERSITY, 2005. Traffic pollution - measuring the real damage Available

from: https://phys.org/news/2005-09-traffic-pollution-real.html

CHANDAN, G., et al., 2018. Real Time Object Detection and Tracking Using Deep

Learning and OpenCV Available from: https://www.researchgate.net/profile/Ayush-Jain-

23/publication/331421347_Real_Time_Object_Detection_and_Tracking_Using_Deep_Learni

ng_and_OpenCV/links/5d70a32f299bf1cb8088576c/Real-Time-Object-Detection-and-

Tracking-Using-Deep-Learning-and-OpenCV.pdf

https://ee-paper.com/microsoft-uses-intel-fpga-technology-to-achieve-smarter-bing-search/#:~:text=Microsoft%20is%20using%20FPGA%20%28field%20programmable%20gate%20array%29,for%20the%20performance%20of%20Bing%E2%80%99s%20intelligent%20search%20function.
https://ee-paper.com/microsoft-uses-intel-fpga-technology-to-achieve-smarter-bing-search/#:~:text=Microsoft%20is%20using%20FPGA%20%28field%20programmable%20gate%20array%29,for%20the%20performance%20of%20Bing%E2%80%99s%20intelligent%20search%20function.
https://ee-paper.com/microsoft-uses-intel-fpga-technology-to-achieve-smarter-bing-search/#:~:text=Microsoft%20is%20using%20FPGA%20%28field%20programmable%20gate%20array%29,for%20the%20performance%20of%20Bing%E2%80%99s%20intelligent%20search%20function.
https://ee-paper.com/microsoft-uses-intel-fpga-technology-to-achieve-smarter-bing-search/#:~:text=Microsoft%20is%20using%20FPGA%20%28field%20programmable%20gate%20array%29,for%20the%20performance%20of%20Bing%E2%80%99s%20intelligent%20search%20function.
https://ee-paper.com/microsoft-uses-intel-fpga-technology-to-achieve-smarter-bing-search/#:~:text=Microsoft%20is%20using%20FPGA%20%28field%20programmable%20gate%20array%29,for%20the%20performance%20of%20Bing%E2%80%99s%20intelligent%20search%20function.
https://pyimagesearch.com/2017/08/21/deep-learning-with-opencv/
https://github.com/AlexeyAB
https://aryaomnitalk.com/advanced-traffic-management-system-atms/
https://aryaomnitalk.com/advanced-traffic-management-system-atms/
https://phys.org/news/2005-09-traffic-pollution-real.html
https://www.researchgate.net/profile/Ayush-Jain-23/publication/331421347_Real_Time_Object_Detection_and_Tracking_Using_Deep_Learning_and_OpenCV/links/5d70a32f299bf1cb8088576c/Real-Time-Object-Detection-and-Tracking-Using-Deep-Learning-and-OpenCV.pdf
https://www.researchgate.net/profile/Ayush-Jain-23/publication/331421347_Real_Time_Object_Detection_and_Tracking_Using_Deep_Learning_and_OpenCV/links/5d70a32f299bf1cb8088576c/Real-Time-Object-Detection-and-Tracking-Using-Deep-Learning-and-OpenCV.pdf
https://www.researchgate.net/profile/Ayush-Jain-23/publication/331421347_Real_Time_Object_Detection_and_Tracking_Using_Deep_Learning_and_OpenCV/links/5d70a32f299bf1cb8088576c/Real-Time-Object-Detection-and-Tracking-Using-Deep-Learning-and-OpenCV.pdf
https://www.researchgate.net/profile/Ayush-Jain-23/publication/331421347_Real_Time_Object_Detection_and_Tracking_Using_Deep_Learning_and_OpenCV/links/5d70a32f299bf1cb8088576c/Real-Time-Object-Detection-and-Tracking-Using-Deep-Learning-and-OpenCV.pdf

32

D. GOSHORN et al., 2010. Field Programmable Gate Array Implementation of Parts-Based

Object Detection for Real Time Video Applications. - 2010 International Conference on Field

Programmable Logic and Applications. pp.582-587

D. T. NGUYEN, et al., 2019. A High-Throughput and Power-Efficient FPGA Implementation of

YOLO CNN for Object Detection. , pp.1861-1873

DARKNET, YOLO: Real-Time Object Detection

DAVID, 2022. keras-YOLOv3-model-set Available

from: https://github.com/david8862/keras-YOLOv3-model-set

DIGANTA MISRA, 2019. Mish: A Self Regularized Non-Monotonic Activation

Function . Available from: https://arxiv.org/abs/1908.08681

E. RZAEV, A. KHANAEV and A. AMERIKANOV, 2021. Neural Network for Real-Time Object

Detection on FPGA. - 2021 International Conference on Industrial Engineering, Applications

and Manufacturing (ICIEAM). pp.719-723

EDWARD ZHANG, 2020. Car Object Detection Available

from: https://www.kaggle.com/datasets/sshikamaru/car-object-detection

EDWARD, R., K. ANTON and A. ALEKSANDR, May, 1 2021. Neural Network for Real-Time Object

Detection on FPGA. Conference: 2021 International Conference on Industrial Engineering,

Applications and Manufacturing (ICIEAM).

EMMERT-STREIB, F. et al., 2020. An introductory review of deep learning for prediction

models with big data. Frontiers in Artificial Intelligence, 3, 4

G. CHANDAN et al., 2018. Real Time Object Detection and Tracking Using Deep Learning

and OpenCV. - 2018 International Conference on Inventive Research in Computing

Applications (ICIRCA). pp.1305-1308

G. HARRIAT CHRISTA et al., 2021. CNN-based Mask Detection System Using OpenCV and

MobileNetV2. - 2021 3rd International Conference on Signal Processing and Communication

(ICPSC). pp.115-119

GEORGE MILEV, ASTLEY HASTINGS and AMIN AL-HABAIBEH, 2019. Investigating The

Effect of Expanding The Use of Electric Cars On The

Environment - A Case Study From Scotland.

GOOGLECOLAB, Welcome To Colaboratory Available

from: https://colab.research.google.com/#scrollTo=Nma_JWh-W-IF

HENRIK, J., 2015. Evaluating Vivado High-Level

Synthesis on OpenCV Functions

for the Zynq-7000 FPGA. www.diva-portal.org,

IAN KUON, R.TESSIER and JONATHAN ROSE, 2008. FPGA Architecture Available

from: https://www.semanticscholar.org/paper/FPGA-Architecture-Kuon-

Tessier/921c9c904a79f91b85a4b086cb446c4d33911c3c

J. P. KNIGHT, J. P. Knight Available from: https://en.wikipedia.org/wiki/J._P._Knight

JUN SANG et al., 2018. An improved YOLOv2 for vehicle detection.

https://github.com/david8862/keras-YOLOv3-model-set
https://arxiv.org/abs/1908.08681
https://www.kaggle.com/datasets/sshikamaru/car-object-detection
https://colab.research.google.com/#scrollTo=Nma_JWh-W-IF
https://refworks.proquest.com/www.diva-portal.org,
https://www.semanticscholar.org/paper/FPGA-Architecture-Kuon-Tessier/921c9c904a79f91b85a4b086cb446c4d33911c3c
https://www.semanticscholar.org/paper/FPGA-Architecture-Kuon-Tessier/921c9c904a79f91b85a4b086cb446c4d33911c3c
https://en.wikipedia.org/wiki/J._P._Knight

33

JUNIPER RESEARCH, 2022. SMART TRAFFIC MANAGEMENT SYSTEMS TO SAVE 205

MILLION METRIC TONS OF CO2 BY 2027; DRIVEN BY CONGESTION REDUCTION Available

from: https://www.juniperresearch.com/pressreleases/smart-traffic-management-

systems-to-save-205m

J. GONG et al., 2020. Vehicle detection in thermal images with an improved yolov3-tiny. - 2020

IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). pp.253-

256

JIANXIAO, Z. et al., Dec 23. MME-YOLO: Multi-Sensor Multi-Level Enhanced YOLO for Robust

Vehicle Detection in Traffic Surveillance.

LONGZHEN YU et al., 2022. An Efficient YOLO Algorithm with an Attention Mechanism for

Vision-Based Defect Inspection Deployed on FPGA.

LOUISE CROCKETT et al., 2019. Exploring Zynq MPSoC: With PYNQ and Machine Learning

Applications. Glasgow:

M. A. HEDEYA, A. H. EID and R. F. ABDEL-KADER, 2020. A Super-Learner Ensemble of Deep

Networks for Vehicle-Type Classification. , pp.98266-98280

M. P. PHILIPSEN et al., 2015. Traffic Light Detection: A Learning Algorithm and Evaluations on

Challenging Dataset. - 2015 IEEE 18th International Conference on Intelligent Transportation

Systems. pp.2341-2345

M. DHOUIBI, A. K. BEN SALEM and S. B. SAOUD, 2020. CNN for object recognition

implementation on FPGA using PYNQ framework. - 2020 IEEE Eighth International

Conference on Communications and Networking (ComNet). pp.1-6

MAHASHREVETA CHOUDHARY, 2019. What is Intelligent Transport System and how it

works?Available from: https://www.geospatialworld.net/blogs/what-is-intelligent-transport-

system-and-how-it-works/

MARCO WINZKER, 2022. FPGA VISION REMOTE LAB Available from: https://www.h-

brs.de/de/fpga-vision-lab

MAX N. ROECKER et al., 2018. Automatic Vehicle type Classification with Convolutional

Neural Networks.

MARYAM BONEH, 2022. VehicleDetection Available

from: https://github.com/MaryamBoneh/Vehicle-Detection/blob/main/README.md

NAEEM AYOUB, 2021. Real-Time On-Board Deep Learning Fault Detection for Autonomous

UAV Inspections. https://www.mdpi.com/journal/electronics,

NAGRATH, P. et al., 2021. SSDMNV2: A real time DNN-based face mask detection system

using single shot multibox detector and MobileNetV2. Sustainable Cities and Society, 66,

102692

NHTSA, NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION Available

from: https://www.nhtsa.gov/

OPENCV, 2022a. Deep Neural Networks (dnn module) Available

from: https://docs.opencv.org/4.x/d2/d58/tutorial_table_of_content_dnn.html

https://www.juniperresearch.com/pressreleases/smart-traffic-management-systems-to-save-205m
https://www.juniperresearch.com/pressreleases/smart-traffic-management-systems-to-save-205m
https://www.geospatialworld.net/blogs/what-is-intelligent-transport-system-and-how-it-works/
https://www.geospatialworld.net/blogs/what-is-intelligent-transport-system-and-how-it-works/
https://www.h-brs.de/de/fpga-vision-lab
https://www.h-brs.de/de/fpga-vision-lab
https://github.com/MaryamBoneh/Vehicle-Detection/blob/main/README.md
https://www.mdpi.com/journal/electronics,
https://www.nhtsa.gov/
https://docs.opencv.org/4.x/d2/d58/tutorial_table_of_content_dnn.html

34

OPENCV, 2022b. OpenCV Available from: https://opencv.org/about/

PAVEL LAPTEV et al., 2022. Neural Network-Based Price Tag Data Analysis.

PYNQ, 2018. Base Overlay Available

from: https://pynq.readthedocs.io/en/v2.3/pynq_overlays/pynqz2/pynqz2_base_overlay.ht

ml

PYNQ, 2018. Jupyter Notebooks [viewed 10/08/ 2022]. Available

from: https://pynq.readthedocs.io/en/v2.3/jupyter_notebooks.html

REDMON, J. and A. FARHADI, 2018. Yolov3: An incremental improvement. arXiv preprint

arXiv:1804.02767,

R. V. KSHIRSAGAR and V. V. DABAHDE, 2015. FPGA-Based Intelligent Traffic Light Controller

System Design. 2(4),

REKOR, 2022. Missouri DOT Selects Rekor Systems’ Advanced AI-Driven Solutions to

Improve Highway Congestion and Reduce Traffic Fatalities Available

from: https://www.rekor.ai/post/missouri-dot-selects-rekor-systems-advanced-ai-driven-

solutions-to-improve-highway-congestion-and-reduce-traffic-fatalities

S. OH, J. -H. YOU and Y. -K. KIM, 2020. Implementation of Compressed YOLOv3-tiny on

FPGA-SoC. - 2020 IEEE International Conference on Consumer Electronics - Asia (ICCE-

Asia). pp.1-4

S. RUJIKIETGUMJORN and N. WATCHARAPINCHAI, 2017. Vehicle detection with sub-class

training using R-CNN for the UA-DETRAC benchmark. - 2017 14th IEEE International Conference

on Advanced Video and Signal Based Surveillance (AVSS). pp.1-5

S.L.QADDORI and N.T.GADAWE, 2020. Real-Time Traffic Light Controller System based on

FPGA and Arduino Available from: https://eudl.eu/pdf/10.4108/eai.28-6-2020.2297938

S.VAMSHI KRISHNA and P.GIRI PRASAD, 2017. Design and Implementation of ITLC System

Using FPGA. 12(05),

SMITH, S.F. et al., 2013. Surtrac: Scalable urban traffic control.

SWARCO, Advanced Traffic Management Systems (ATMS) Available

from: https://www.swarco.com/solutions/traffic-management/highway-and-

tunnel/atms#:~:text=The%20Integrated%20Approach%20to%20Traffic,user%20and%20the

%20highway%20operator.&text=driving%20conditions%20while%20reducing%20emissions.

T. FANG, X. HUANG and J. SANIIE, 2021. Design Flow for Real-Time Face Mask Detection

Using PYNQ System-on-Chip Platform. - 2021 IEEE International Conference on Electro

Information Technology (EIT). pp.1-5

TAL KREISLER , and URIEL KATZ, No Traffic Available from: https://notraffic.tech/

TEXAS A&M TRANSPORTATION INSTITUTE, 2021 Urban Mobility Report Available

from: https://mobility.tamu.edu/umr/

THE GUARDIAN, 2005. Darling unveils road charging plans Available

from: https://www.theguardian.com/politics/2005/jun/09/immigrationpolicy.transport

https://opencv.org/about/
https://pynq.readthedocs.io/en/v2.3/pynq_overlays/pynqz2/pynqz2_base_overlay.html
https://pynq.readthedocs.io/en/v2.3/pynq_overlays/pynqz2/pynqz2_base_overlay.html
https://pynq.readthedocs.io/en/v2.3/jupyter_notebooks.html
https://www.rekor.ai/post/missouri-dot-selects-rekor-systems-advanced-ai-driven-solutions-to-improve-highway-congestion-and-reduce-traffic-fatalities
https://www.rekor.ai/post/missouri-dot-selects-rekor-systems-advanced-ai-driven-solutions-to-improve-highway-congestion-and-reduce-traffic-fatalities
https://eudl.eu/pdf/10.4108/eai.28-6-2020.2297938
https://www.swarco.com/solutions/traffic-management/highway-and-tunnel/atms#:~:text=The%20Integrated%20Approach%20to%20Traffic,user%20and%20the%20highway%20operator.&text=driving%20conditions%20while%20reducing%20emissions.
https://www.swarco.com/solutions/traffic-management/highway-and-tunnel/atms#:~:text=The%20Integrated%20Approach%20to%20Traffic,user%20and%20the%20highway%20operator.&text=driving%20conditions%20while%20reducing%20emissions.
https://www.swarco.com/solutions/traffic-management/highway-and-tunnel/atms#:~:text=The%20Integrated%20Approach%20to%20Traffic,user%20and%20the%20highway%20operator.&text=driving%20conditions%20while%20reducing%20emissions.
https://notraffic.tech/
https://mobility.tamu.edu/umr/
https://www.theguardian.com/politics/2005/jun/09/immigrationpolicy.transport

35

TRAFIKSOL, 2018. ADVANCED TRAFFIC MANAGEMENT SYSTEM Available

from: https://www.trafiksol.com/advanced-traffic-management-system/

UNITED NATIONS, 2018. 68% of the world population projected to live in urban areas by

2050 Available from: https://www.un.org/development/desa/en/news/population/2018-

revision-of-world-urbanization-prospects.html

V. SZE, et al., 2017. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. ,

pp.2295-2329

VITO ALBINO, UMBERTO BERARDI and ROSA MARIA DANGELICO, 2015. Smart Cities:

Definitions, Dimensions, Performance, and Initiatives. 22(1),

WEFORUM, 2018. Traffic congestion cost the US economy nearly $87 billion in

2018 Available from: https://www.weforum.org/agenda/2019/03/traffic-congestion-cost-

the-us-economy-nearly-87-billion-in-2018/

XILINX, 2022a. How AXI4-Stream Works Available from: https://docs.xilinx.com/r/en-

US/ug1399-vitis-hls/How-AXI4-Stream-Works

XILINX, 2022b. TUL PYNQ™-Z2 board Available

from: https://www.tulembedded.com/FPGA/ProductsPYNQ-Z2.html

X. LI, et al., 2019. The ParallelEye Dataset: A Large Collection of Virtual Images for Traffic Vision

Research. , pp.2072-2084

Y. LECUN and Y. BENGIO, 1995. Convolutional networks for

images, speech, and time series. In: The handbook of brain

theory and neural networks 3361.10 (1995).

YANN LECUN, YOSHUA BENGIO and GEOFFREY HINTON, 2015. Deep Learning.

Y. LECUN et al., 1989. Backpropagation Applied to Handwritten Zip Code Recognition.

Volume 1(Issue 4),

Y. TU et al., 2019. A Power Efficient Neural Network Implementation on Heterogeneous

FPGA and GPU Devices. - 2019 IEEE 20th International Conference on Information Reuse and

Integration for Data Science (IRI). pp.193-199

Z. CHEN et al., 2019. Real Time Object Detection, Tracking, and Distance and Motion

Estimation based on Deep Learning: Application to Smart Mobility. - 2019 Eighth

International Conference on Emerging Security Technologies (EST). pp.1-6

Z. DONG, et al., 2015a. Vehicle Type Classification Using a Semisupervised Convolutional

Neural Network. , pp.2247-2256

Z. HUO, Y. XIA and B. ZHANG, 2016. Vehicle type classification and attribute prediction using

multi-task RCNN. - 2016 9th International Congress on Image and Signal Processing,

BioMedical Engineering and Informatics (CISP-BMEI). pp.564-569

Weng, Lilian (2017). “Object detection for dummies part 3: R-CNN family”. In: lilianweng.

github. io/lil-log.

https://www.trafiksol.com/advanced-traffic-management-system/
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://www.weforum.org/agenda/2019/03/traffic-congestion-cost-the-us-economy-nearly-87-billion-in-2018/
https://www.weforum.org/agenda/2019/03/traffic-congestion-cost-the-us-economy-nearly-87-billion-in-2018/
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/How-AXI4-Stream-Works
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/How-AXI4-Stream-Works
https://www.tulembedded.com/FPGA/ProductsPYNQ-Z2.html

36

Zou, Zhengxia et al. (2019). “Object detection in 20 years: A survey”. In: arXiv preprint

arXiv:1905.05055.

