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Abstract

Understanding the geology of a reservoir requires accurate identification of its
lithological facies. Lithological facies classification is the process of determining
rock lithology by analyzing indirect measurements such as well logs. Well logging is
a standard tool for determining reservoir parameters. The interpretation of well
logging data, on the other hand, may take some time but machine learning (ML) can

automate the process in less time.

The objective of the study is to investigate the use of machine learning and well logs
in classifying rock facies, and to improve the accuracy of different machine learning
model compared to previous published research on the same dataset. A total of 118
wells, with 12 known lithology from a field in North Sea were available for analysis
and classification, the dataset is divided into three for training, testing and

validation purpose.

Nine machine learning model which include Random Forest (RF), Decision tree,
Support vector machine (SVM), Gradient boosting (GB), Categorical boosting
(CatBoost), Light gradient boosting (LGBM), Extreme gradient boosting (XGB), K-
Nearest Neighbour (KNN), and logistic regression was designed and trained with a
sample of the dataset. The random forest model outperforms the other methods in
classifying the lithofacies in the dataset with 91% accuracy. For each model, | also
tested various scenarios including feature engineering, machine learning
imputation, data augmentation and outlier removal to improve the performance of

the models.

Random Forest, CatBoost, XGB and Gradient boosting performed best without any
form of feature engineering, outlier filter and ML imputation. Logistic regression,
decision tree and SVM performed best when the dataset has ML imputation (scenario
2), KNN and LGBM performed best with feature engineering. The top 3 model were
then used to train the entire train set and evaluated with the open and hidden
dataset. The RF base model performed best with an accuracy of 78% and 80%, on the
open and hidden data respectively, the accuracy on the open data increased by 1%
when the data is trained with hyperparameters and augmented data. The accuracy
of XGB model increased by 4% and 3% when the data was trained with additional

feature.



According to the findings that | obtained, machine learning algorithms have a
significant application in the automatic classification of lithology facies with high
accuracy and efficiency. It has the potential to significantly improve the rock

physical property estimation process while simultaneously reducing the amount of
manual labour required.
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CHAPTER ONE

INTRODUCTION

1.1 General Statement

Machine learning (ML) algorithms are designed to locate and correctly predict
patterns in multivariate data as quickly as possible. The application of machine and
deep learning techniques to investigate volumes of diverse multivariate geospatial
data holds enormous promise for industry and research in the geosciences. The oil
and gas business are critical to increasing energy demands to increase profit. To
overcome the problems connected with diverse exploration and production
operations, newer unconventional wells are drilled for the extraction of
hydrocarbons, which necessitates technological innovations. The oil and gas business
demands increasingly creative technologies to remain competitive in the globalized
energy market. These technologies must enable continuous, cost-effective, high-

quality, and long-term production.

The fields of big data analytics, machine learning, and deep learning have become
particularly attractive study subjects for a wide range of applications as a direct
result of the development of methods involving high levels of computational
complexity. (Wang and Alexander 2015; Anifowose et al. 2014). These methods are
capable of processing large volumes of data, extracting meaningful information from
raw data, and identifying hidden patterns in the data. These advanced techniques
can quickly filter out noise, reduce dimensionality, model nonlinear relationships,
and are occasionally useful in dealing with reservoir uncertainties (Bhattacharya et
al. 2016; Wang and Alexander 2015).

As a result, ML algorithms have been developed to handle complicated
categorization and estimation challenges (Chaki et al. 2015; Avseth and Mukerji
2002). Machine learning has various advantages, including being cost-effective,
allowing for speedy mitigation of real-world problems, real-time deployment,
allowing for real-world automation, and being found to be more resilient and

reliable. ML models, on the other hand, have significant challenges with data
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reliance, data availability, immature infrastructure, and multidisciplinary
knowledge (Bhattacharya et al. 2016; Wang and Alexander 2015)

Machine learning models can help solve real challenges in the petroleum industry.
As a result, hybrid computational models, such as ensemble models, are becoming
increasingly popular. These techniques are critical, especially when high
classification or estimate accuracy is desired, because they can improve a ML model's

performance by improving its modelling strategy (Anifowose et al. 2014).

The classification of facies is a crucial stage in reservoir modelling. During oil and
gas exploration and production, a precise understanding of facies is crucial for
enhancing the characterization of reservoir features. It aids in the better knowledge

of the geology, petrophysical, and reservoir properties by geologists and engineers.

The oil and gas industry has paid close attention to the rapid development of data-
driven modelling methods in recent years (Sebtosheikh and Salehi 2015 and Xie et
al. 2018). Research is being conducted on several methodologies, and these
approaches are being implemented in a variety of contexts, such as well log
interpretation, seismic signal analysis, and seismic interpretation (Zu et al. 2018;
Qu et al. 2019; Chen 2020; Lopez et al. 2020).

Geoscience data are usually characterized by a limited number, distribution of
direct observations, irreducible noise, high intraclass variability and interclass
similarity. As a result, the machine learning method or algorithms chosen, as well
as the specifics of how they are applied, must be appropriate for the context of
geoscience data. Therefore, this study will primarily focus on the use of feature

engineering and ensemble models for lithofacies identification using well logs.

1.2. Problem statement

The identification and mapping of porous and permeable sandstone reservoirs
storing commercial volumes of hydrocarbons is critical to the success of any
conventional hydrocarbon exploration programme (Primmer et al., 1997).
Traditionally, geologists manually review well-logs to recognise various lithofacies
layers based on their experience. However, when complex well-logs are interpreted

manually, there is always a significant risk of human error. Well log data usually
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overlap, and they are not linearly connected which causes manual interpretation of
lithofacies to fail. It is also time consuming and expensive to manually interpret

well logs.

Utilizing machine learning algorithms to systematically speed up the process and
accurately predict the rock lithofacies from well log is one of the potential solutions
to this problem. To achieve the desired level of accuracy in the outputs, the data-
driven algorithms require a significant amount of data, which must be utilised during

the training process in a balanced manner.

Building a reservoir model to produce hydrocarbons requires an understanding of the
petrophysical characteristics of rocks and their spatial distribution in relation to
lithofacies (Bai et al. 2012). The more well logs that need to be interpreted, the
more challenging the task becomes. Therefore, it is necessary to automate the
reservoir characterization process. As a result, geologists may create more accurate
quantitative evaluation models of various rock qualities, which can enhance oil
production. Machine learning methods, such as ensembles, may be able to address
issues in the oil and gas sector. In this thesis, the ensemble approach and feature
engineering are specifically examined to address problems with lithofacies

identification.

1.3. Research question

1. What makes some supervised machine learning algorithms so good at
predicting lithofacies from geophysical well log data?

2. Which machine learning algorithm will best classify lithology in this data?

3. Can data augmentation improve the performance of the classification model?

4. Can creating new features from the existing ones improves the classification

accuracy?

1.4. Objectives
This study attempts to apply machine learning methods for lithofacies classification

and aims to achieve the following objectives:

1. To classify lithofacies using ensemble classifiers.
2. To enhance the prediction accuracy of lithofacies classification using ML

techniques as compared to earlier published research on the same dataset.
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CHAPTER TWO

THEORETICAL BACKGROUND AND LITERATURE REVIEW

2.1. Machine Learning

Machine learning uses the ability of computers to learn, execute calculations, store
data, and receive instruction swiftly to process and train data for classification or
prediction purpose (Sivia 1996; Burl et al. 1998). Reinforcement learning is one of
the four primary paradigms that comprise machine learning, along with unsupervised
learning, semi-supervised learning, and supervised learning.

There is a wide variety of machine learning algorithms, and each one has its own
specific set of advantages and disadvantages for the purpose of resolving geoscience
issues. Machine learning algorithms (MLA) uses an automatically adaptive approach
to recognise patterns in data and then apply the learned relationships to other data
sets with patterns that are similar. MLAs have the capability to generate predictions
for classification and regression problems inductively, which is particularly helpful
when the process being investigated is represented by high-dimensional multivariate
input data (Witten and Frank 2005; Kotsiantis 2007; Kanevski et al. 2009).

Common examples of supervised machine learning algorithms include Decision
Trees, Random Forests (RF), Support Vector Machines (SVM), Linear and Logistic
Regression, Naive Bayes, Linear Discriminant Analysis, k-Nearest Neighbor (KNN)
algorithms, and Neural Networks. Other examples include Linear Regression, Naive
Bayes, and Linear Discriminant Analysis. Each of these independent machine learning
models can be placed into one of three broad categories: linear models, nonlinear

models, or Ensemble models.

Unsupervised learning techniques, which are sometimes referred to as exploratory
data analysis techniques in statistics, are responsible for automatically determining
the organisation of a dataset. Because of this, relying on a priori categorization or
other limits and assumptions that have been pre-imposed is reduced. Unsupervised
methods are thought to be more robust than supervised methods because they

estimate the manifold that best represents a dataset only based on the input data.



Likewise, unsupervised methods are resistant to extreme observations or outliers in
the dataset. Cluster analysis techniques are a group of techniques that contain most
unsupervised machine learning techniques. These techniques allow clusters to be
inferred using Euclidian, probabilistic, or similarity distance measurements. Hidden
Markov Models, Self-Organizing Maps (SOM), Gaussian Mixture Models, Hierarchical
Clustering, and k-Means Clustering are some of the most common types of clustering

methods.

2.2. Well and well logs

Subsurface formations and wireline logs (also called well logs) are used as part of
the research process. Therefore, knowing the structure of formations in a well is
essential. It is equally important to understand the concept of a well as it is to
understand what a formation is and how it is distinct from groups. The physical and
mineralogical characteristics of rocks and their interactions with those around them

are used to classify them into lithostratigraphic units, such as formations and groups.

A lithostratigraphic unit can be composed of sedimentary, igneous, or metamorphic-
equivalent rocks. These are the three primary types of rock that occur naturally.
The idea that more recent layers are constructed on top of older ones is the most
important concept of stratigraphy(Geological Survey of Norway, 2015). The
classification of lithostratigraphic units can be done using formations and groups. A
series of beds that is distinct from other beds both above and below it and is thick
enough to be shown on geological maps is referred to as a formation. While a
formation is the most fundamental formal unit of lithostratigraphic classification, a
group can be defined as the succession of two or more connected formations that

share significant and diagnostic lithologic features (Salvador and Murphy 1998).

The most accurate approach for learning the structure of the lithostratigraphic units
in a well would be obtained through the extraction of core samples taken from the
reservoir rock. However, since this process requires a lot of labour and is expensive,
it is not commonly used in the oil industry (Dubois et al. 2007). Considering the
abundance of additional important methods, core samples alone are not sufficient

to obtain sufficient information about a well to adequately interpret the properties



of the reservoir. Wireline or downhole logging is the method that has gained the

most popularity in the modern oil and gas industry.

Wireline logging is a method that plots precise information about geological
formations against each depth point of the well (Leyland 2017).This information is
obtained by sending down a cable into the borehole that is equipped with several
different measuring instruments. After reaching each predetermined depth in the
well, the various measurement devices collect data on a variety of signals, including
resistivity, density, and porosity, amongst others. This can be done either during the

drilling operations or after they have been completed (Vakarelov 2016).

2.2.1. Gamma ray log

The gamma ray log is a tool that is used to determine the total amount of natural
gamma radiation that is emitted by a formation. The isotope series composed of
uranium, radium, thorium, and potassium-40, are the primary contributors to this
gamma radiation. It is common practise to denote the gamma ray log with the symbol
GR. We can detect and quantify the presence of radioactive elements thanks to the
ability of the isotopes that are produced when these chemical elements interact to
build structures at the nuclear energy level. These isotopes do this by emitting
gamma rays (Seland and Thue 2019). After being released by an isotope in the
formation, gamma rays gradually lose energy because of collisions with other atoms
in the rock over a period (compton scattering). The process of Compton scattering
continues right up until the gamma ray's energy becomes so low that the formation
can completely absorb it. The amount of Compton scattering will be directly
proportional to the density of the formation (Glover 2014). The gamma ray is an
instrument that can be utilised to assist in the interpretation of lithology. Even
though the gamma ray log on its own is unable to determine distinct lithology
formations, when combined with other logs, it can provide useful information
lithology (Glover 2014).



2.2.2. Resistivity Log

Electrical resistivity is a measure of how much a material can impede the flow of an
electrical current. A material's resistivity or specific resistance is its resistance over
a unit cube (typically 1 m3) at a given temperature. The resistivity of underground
formations can be measured with electrical logs (or "resistivity logs"). Resistivity
readings can be taken at three depths: shallow, medium, and deep. It is impossible
to overstate the importance of electrical logs to a Petro-physicist’s toolkit. This is
because they can be used to calculate the stock tank oil originally in place (STOOIP)
(Asquith et al. 2004).

A rock is made up of millions of grains, the density of which is determined by the
porosity of the given rock. The space between the grains of a rock with high porosity
is larger, making the rock more permeable. Electrical currents are typically not
carried through rock matrix, but rather through salty formation waters. Dry rock is
an excellent electrical insulator, meaning that it does not transmit electrical
currents. Interstitial water in the pore space or absorbed in the solid matrix of rocks

(e.g., clay minerals) will be less resistive or more conductive.

Resistivity log can also be used for qualitative purposes, such as lithology indications,
facies and electro-facies analysis, correlation, overpressure determination, shale

porosity determination, indications of compaction, and source rock examination.

2.2.3. SP log

In general, the spontaneous potential instrument separates porous, permeable
sandstones from surrounding shales by measuring natural electrical potentials that
arise in boreholes. The "natural battery” results from the interaction of two solutions
with varying ion concentrations when drilling mud with a salinity that differs from
formation fluids is utilised. lons spread from a concentrated solution (usually
formation water) to a diluted one. The SP instrument measures the natural potential
in millivolts, which is produced by the ion flow, which is electrical current
(Schlumberger et al. 1934)

The spontaneous potential log (SP), also known as self-potential, measures the self-

potential differential between the borehole and the surface in the absence of any



artificially applied current. SP can be measured in two ways: potential gradient and
potential amplitude. The potential gradient technique uses a pair of electrodes
spaced at a constant distance (typically between 5 and 10 m) apart and a division

by that distance to determine the gradient (Singha et al. 2021).
There are primarily four applications for the SP log:

» The identification of beds that are permeable.

» Estimating Rw.

» A measure of the amount of shale present in a formation.

e Correlation.

2.2.4. Sonic Log

The sonic or acoustic log is used to measure the amount of time it takes for an elastic
wave to move through the formation. This can be used to calculate the velocity of
elastic waves as they move through the formation. The bore hole-centred sonic log
tool which comprises of an acoustic transmitter and two receivers are separated
from one another and from the transmitter. This is done to ensure that the sonic
pulse is radiated in a symmetrical manner and that measurements are taken
concurrently on all sides of the hole. In addition, this helps ensure that the hole is
not distorted. The time it takes for an elastic wave, or a "sound” pulse, to travel
from a transmitter to a receiver on the device is measured. The transmitted pulse
is both intense and fleeting in duration. This is attenuated and dispersed (the wave
energy is spread out over time and space) as it travels through the rock in its various
forms (loss of energy through absorption of energy by the formations). Since
different rock types have varying degrees of transparency, the log can be used to

determine the porosity of a hole that is filled with liquid (Rider 1991).
The main uses of sonic log are:
» Recording "seismic” velocity and travel time in a borehole.

» Synthetic seismograms can be made possible with the help of the "seismic" data

provided.



« Estimation of porosity (together with the FDC and CNL tools).
« Lithostratigraphic correlation.

« Lithology identification.

» Source rock detection

« Fracture detection.

 Detection of over-pressures and compaction in rocks.

2.2.5. Density Log.

The purpose of the density log is to determine the overall density of the rock. It
establishes the relationship between density and porosity in the rock. Gas-containing
deposits and evaporites are also detected with density log. It is primarily employed
in determining the total porosity of the formation. Furthermore, it helps in the

recognition of evaporites and the detection of gas-bearing formations (Rider 2011).

Like other active open hole tools, a density log operates by projecting gamma rays
into a formation and measuring its scattering at Cesium-137, which produces gamma
rays with a high energy, is the source used by the sondes. The scattering back gamma

rays that detectors pick up depend on the formation's electron density.

The radioactive source is installed on the well bore wall in a protected sidewall skid
and emits medium gamma rays into the formation. Gamma ray waves can be thought
of as energetic particles. The gamma ray loses some of its energy to the electron
during the creation process as these energy particles (photons) collide with them.
This is referred to as Compton scattering. The greater the number of electrons in
the formation, the more energy is wasted due to collisions. The energy loss is
proportional to porosity if the matrix density is known. Lower bulk density is implied
by lower electron density. Density log is a very good method for lithological
identification when used with neutron log. To calculate porosity, the formation
density log is typically used. Other important uses of density log are finding gas
deposits and locating mineral composition (particularly evaporites). Combining
formation density log data with neutron log data is one of the most reliable methods

for identifying lithologies in a borehole.



2.2.6. Neutron Porosity Log

The neutron logging equipment sends neutrons into the formation, where they lose
energy and produce high-energy gamma rays. Because of the interaction with
hydrogen atoms, the dispersed neutrons lose energy. The number of hydrogen atoms
in a formation has the greatest impact on the neutron log. Its primary application is
to determine the porosity of a formation. As a result, the energy of absorbing
neutrons decreases as the number of hydrogen atoms increases. It indicates that in

a porous rock, the count on the receiving end is low, and vice versa.

The neutron porosity log and the density log are frequently combined on suitable
scales. The combination of the two logs is one of the most accurate indicators of the
lithology of the subsurface that is currently known. This is because both the neutron
log and the density log evaluate the porosity of a formation, and discrepancies
between the two logs can be helpful in determining the nature of certain formations
(Rider 1991).

2.3. Literature Review

In reservoir description and characterization, lithofacies classification is a critical
and necessary task. In the exploration and development of hydrocarbon, reliable
lithofacies recognition is helpful in increasing the precision and reducing the
uncertainty of reservoir estimation (Xiong et al. 2010; Liu et al. 2017; Zhang et al.
2018). Facies is a sedimentary unit that can be identified from its surroundings by
its petrophysical features. Facies that can be distinguished based on its mineralogy
and grain size is called lithology facies or lithofacies. Using well logs to determine
lithofacies or rock types is a crucial task for the field development plan. With the
help of core measurements and seismic data, geologists integrate several types of
well logs and analyze their physical qualities to derive petrophysical features of the
subsurface (Hong et al. 2020). Outcrops, core data, and petrography are common
methods for recognizing and identifying lithology, however outcrops may not
appropriately represent what is in the subsurface, and core data are expensive to

acquire.
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Earliest work of lithofacies classification focused on using well log data together
with multivariate statistical approaches. In the early 1980s and 1990s, lithofacies
classification employed the technique of grouping and clustering features. Delfiner
et al. 1987 and Busch et al. 1987 used a discriminant function analysis to identify
lithofacies. Gill et al. (1993) used the correlation of zones between well and

multivariate clustering to classify lithofacies.

Other ML algorithms like Support Vector Machine (SVM), Naive Bayes (NB), Artificial
Neural Network (ANN), fuzzy logic, Principal Component Analysis (PCA) became
popular for solving geoscience problem in 1990. For example, Li and Anderson-
Sprecher, 2006 used Naive bayes. Zhang et al. (1999) and Dubois et al. (2007) used
Artificial Neural Network (ANN), while Al-Anazi and Gates (2010), Sebtosheikh et al.
(2015) and Hall (2016) used Support Vector Machine (SVM) in their research for

lithofacies classification.

Qi and Carr (2006) and Wang and Carr (2012) both used ANN for the classification of
lithofacies based on well logs, and they discovered that ANN produces a significant
accuracy. According to the work of Graves (2012), neural network models struggle
with sequential data because there is no record of previous entries in its internal
structure, therefore most research that uses neural network combines it with a post
processing step that considers the likelihood of succession such as probabilistic
statistical analysis. Deep neural networks (DNNs) are one of the most popular new
approaches to automatic lithofacies classification. One of the advantages of DNN is
the ability to get high level features from input data because of the large number

of layers (Santos et al. 2021).

Convolutional Neural Network (CNN) is a type of DNN that consists of multiple
convolutional filter layers. Silva et al. 2015 and Lindberg et al. 2015 both identified
lithofacies using CNNs. Tschannen et al. (2017) used an inception convolution
network to predict lithofacies, their prediction was satisfactory in the first order but
failed at replicating the high accuracy of a geologist interpretation. In a gas reservoir
at Ordos basin, Lin et al. (2020) used a Long Short Term Memory (LSTM) network
using Adam optimizer to analyze data from well logs. According to their findings,
the LSTM network can correctly categorize rock lithofacies in thin interbedding

layers and carbonate reservoirs that have thin interbedding lithofacies. Recently,
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Xie et al. (2018) evaluated five common ML algorithms and discovered that selecting
parameters and reservoir type have a significant effect on the accuracy of the ML

method used.

Hall (2016) used support vector machine to solve the problem of geophysical
lithofacies classification in the Panoma field, and he achieved an accuracy of 43%.
Using same panoma field data, the Society of Exploration Geophysicists (SEG) held
a machine learning competition in 2016 to forecast lithofacies (Hall 2016).
Participants employed a variety of models, such as boosted tree models, neural
networks, k-nearest neighbours (k-NN) and support vector machines (Hall and Hall
2017). Boosted tree method was the most accurate model, with an accuracy of 0.64
(Hall and Hall 2017). Imamverdiyev and Sukhostat, 2019 developed a 1D-CNN using
three optimizers, and they compared the model to recurrent neural network (RNN),
LSTM, SVM and k-NN algorithm. They showed that 1D-CNN (Adagrad) is better

compared to other method with an accuracy of 76.87%.

Based on the well logs, Li and Zhang (2016) investigated the use of data-driven
models to make predictions about the presence of sand, shale, and a mixture of the
two. Several distinct data analytics algorithms, including logistic regression,
gaussian discriminant analysis, random forest, and support vector machine, were
put through their paces to identify the model that provided the most accurate
predictions. Liu et al. (2020) improved the accuracy of lithology identification by
developing a Multikernal Relevance Vector Machine using a set of inverted elastic
attributes. There method preserves the benefits of traditional Support Vector
Machine algorithms while optimising processes with Bayesian analyses. When
compared to traditional methods, their results show advantages such as better

generalisation and accuracy in identifying rock facies.

Using stratigraphic interpretation and well logs, Kim et al. (2018) developed random
forest models to assist in the classification of seismic facies. The significance of each
input feature in seismic facies classification is also determined by their model. This
not only helps in the selection of important features, but it also reduces the amount
of computational power that is required for the subsequent establishment of more

complex models.
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To assist in the differentiation of lithology types such as sand, silt, and clay, Lopez
et al. (2020) developed several data-driven models including least-squares
polynomial approximation, random forest, and support vector machine, amongst
others. Their research demonstrates that data-driven models can differentiate
between different types of lithologies by analysing the values of electrical resistivity
and seismic wave velocity. The findings also indicate that the random forest model's
forecasted lithology has a higher statistical correlation with the lithology that was

found in their research.

Geologic domain knowledge was employed by Bestagini et al. (2017) to create a set
of augmented characteristics for categorising well log data that were used by the
top teams in the competition. They estimated gradients of each of the well log
values and included non-linear characteristics. This demonstrates how the
characteristics of the rock change as depth increases, which may imply the
environment of deposition. With the help of this feature, the machine learning
system can perceive the surroundings of a sample, providing context that it can

utilise to distinguish between different rock kinds.

Chen and Zeng (2018) showed that the performance of the classifier may be
enhanced by utilising petrophysical features computed from the base well logs. They
adapted Archie's equation to include the log ratio of two measures, resistivity, and

neutron porosity, which increased the precision of their predictions.

Another competition based on lithofacies classification was organized by FORCE with
the objective of correctly predicting lithology patterns using well logs. The top 3
team achieved an accuracy of 80.1% and 79.9% using extreme gradient boost, and
79.9% using Random Forest respectively. Each of these models appears to excel in
some areas, thus combining them to create an ensemble model with a high

predictive ability seems like the logical next step for this study.
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Table 2.1: Summary of related works on the use of machine and deep learning on

lithology classification

S/N | Authors Summary of research

1 Delfiner et al. (1987). Used Bayesian rule to assign depth level to a

lithofacies using a database.

2 Busch et al. (1987). They compared different model by employing the
statistical method of discriminant analysis and
chose model the best model that predict lithology

with 75 % accuracy.

3 Qi and Carr (2006). They classified lithofacies with ANN, using well
logs and they reported absolute accuracies range
from 70.37 to 90.82 percent.

4 Wang and Carr (2012). | Their study discovered that the neural network
performs better for shale lithofacies prediction

than the discriminant analysis.

5 Gill et al. (1993). They successfully Used hierarchical clustering
algorithm for zoning and recognizing log facies,
and this means that log facies might be helpful
for interwell correlations and locating reversal

faults in boreholes.

6 Silva et al. (2015). This study focused on using a back-propagation
neural network algorithm for petrographic
classification using well logs, and their result
shows the effectiveness of ANN with an accuracy

of 85.62 percent.

7 Lindberg et al. (2015). | The authors used convolutional hidden Markov
model for facies classification, and they reported
that the combination of neutron porosity log,

resistivity and gamma ray log as a subset yielded

the best prediction.
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Tschannen et al. (2017).

They trained an inception network, to extract
reservoir stratigraphy from well data.

The model was suitable in the first instance,

but it was unable to precisely repeat the
geologists’ work since it lacked higher resolution

core sample data and additional well readings.

Lin et al. (2020).

On a tight gas sandstone reservoir, the LSTM-
based Adam optimizer can more accurately
identify rock facies than the Sgdm and Rmsprop
optimizers can, provided that the sample size and
number of hidden layer neurons are appropriately
set.

10

Hall (2016).

With the use of a support vector machine, the
author was able to solve the geophysical
lithofacies classification issue in the Panoma field

with an accuracy of 43%.

11

Hall and Hall (2017).

The Society of Exploration Geophysicists (SEG)
held a machine learning competition in 2016 to
forecast lithofacies. It was reported that beyond
using the most suitable model, the use of domain
knowledge to create new features improved the

classification model's accuracy.

12

Imamverdiyev and

Sukhostat (2019).

The authors used different algorithm to classify
lithofacies and their result shows that 1D-CNN
model is more accurate compared to SVM, k-
NN, RNN, and LSTM.

13

Li and
Sprecher (2006).

Anderson-

Core and well log data was used to compare the

classification of naive bayes to a linear
discriminant analysis, and their result indicates

that both methods performed satisfactorily.

14

Zhang et al. (1999).

For post-stack seismic lithology prediction, they
combined DNN and CNNs with continuous wavelet
(CWTs).

transforms In terms of prediction
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https://www.sciencedirect.com/topics/engineering/support-vector-machine
https://www.sciencedirect.com/topics/engineering/recurrent-neural-network
https://www.sciencedirect.com/topics/engineering/long-short-term-memory

accuracy, CWT-CNN models outperform DNN,
CNN, and CWT-DNN models.

15

Dubois et al. (2007).

The authors compared four models for facies
classification and discovered that to match the
the non-

performance of neural networks,

parametric approaches such as k-nearest

neighbour and fuzzy logic would need to be

significantly improved.
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Al-Anazi
(2010).

and

Gates

The lithology and permeability predictions made
by SVM are contrasted with those made by
conventional regression and back-propagation
neural networks. According to statistical error
analysis, the SVM method outperforms neural
network methods in terms of identification of the

lithology and permeability estimates.
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Sebtosheikh et
(2015).

al.

This study used SVM in predicting lithology, and
their results indicate that SVM is a practical
method for lithology prediction, and that the
radial basis function kernel, which produces the
lowest misclassification rate error, is more

accurate than other kernel functions.

18

Merembayev et
(2021)

al.

The authors employed wavelet transformation in
machine learning to classify lithologies of well
logs from Norway and Kazakhstan, and they
reported an accuracy of 94.8% and 98%

respectively.

19

Masapanta (2021)

This study investigated the use of different
machine learning model such as tree based
gradient boosting and neural network to classify
lithologies in a Norway field, and he achieved an

accuracy of 82.5% on the test data.
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20

Force (2020)

A machine learning competition for facies
classification was held in 2020 using the Norway
data provided by FORCE, and the top 3 model
achieved an accuracy of 80%, 78% and 79& on the
blind dataset.
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CHAPTER THREE

METHODOLOGY
3.1. Dataset

This research will make use of the datasets that were collected during the "Machine-
Learning Lithology Prediction Contest” that took place in 2020 and was organised by
FORCE, a cooperating forum that is run by Norwegian oil and gas companies and
authorities. The data can be downloaded from
https://drive.google.com/drive/folders/0B7brcfeGK8CRUhfRWIrSG91bW8?resourc

ekey=0-NsLk7JL-IDDxUKPVpOdZrw. The dataset is made up of 118 wells drilled off

the coast of Norway, with locations spanning the Viking Graben to the south and

north. Geophysical well logs are single-point observations of rock physical
characteristics recorded in a well at a certain depth. Three distinct data subsets,
each having a different function, are also included in the data. There are 98, 10,
and 10 wells in the training, open test, and hidden test subsets, respectively.

Well logs, interpreted lithofacies, and lithostratigraphy are all included in the
dataset. The well logs contain the well's name, the measured depth, the wireline
measurement locations, as well as the well logs CALI, RDEP, RHOB, DHRO, SGR, GR,
RMED, RMIC, NPHI, PEF, RSHA, DTC, SP, BS, ROP, DTS, DCAL, and MUDWEIGHT. An

explanation of the abbreviations is shown in the table 3.1.

Table 2.1: Description of the dataset features.

S/N FEATURES DESCRIPTION
1 FORCE_2020 LITHOFACIES_CONFIDENCE Qualitative
measurement of

interpretation

confidence
2 GR Gamma Ray Log
FORCE_2020_LITHOFACIES_LITHOLOGY Interpreted lithofacies
4 RSHA Shallow Reading
Restitivity
measurement
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https://drive.google.com/drive/folders/0B7brcfeGK8CRUhfRW9rSG91bW8?resourcekey=0-NsLk7JL-IDDxUKPVp0dZrw
https://drive.google.com/drive/folders/0B7brcfeGK8CRUhfRW9rSG91bW8?resourcekey=0-NsLk7JL-IDDxUKPVp0dZrw

5 RMED Medium Deep Reading
Restitivity
measurement

6 RDEP Deep Reading
Restitivity
measurement

7 RMIC Micro Resisitivity
measurement

8 SP Self-Potential Log

9 RXO Flushed Zone
Resistivity
measurement

10 DTS Shear wave sonic log
(us/ft)

11 ROPA Average Rate of
Penetration

12 DTC Compressional waves
sonic log (us(ft))

13 NPHI Neutron Porosity log

14 PEF Photoelectric
Absorption Factor log

15 RHOB Bulk Density Log

16 DTC Compressional waves
sonic log (us(ft))

17 DRHO Density Correction log

18 SGR Spectra Gamma Ray log

19 BS Borehole size

20 DCAL Differential Caliper log

21 MUDWEIGHT Weight of Drilling Mud

22 ROP Rate of Penetration

23 CALI Caliper log

24 DEPTH_MD Measured Depth
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25 X_loc X location of sample

26 Y_loc Y location of sample

27 X_loc Z(TVDSS) location of
sample

3.2. Exploratory Data Analysis (EDA)

Exploratory data analysis is a process that involves investigating data to discover
relevant information and preexisting patterns. Understanding the nature of the data
and developing early potential strategies or methodologies for addressing the
challenges associated with lithofacies classification is the primary purpose of EDA in
this study. EDA makes use of data visualisation, which includes plotting the well log
data, creating cross plots and correlation plots to better understand the dataset,

and many other similar activities.

3.3. Data Preparation

Data preparation and cleaning is an essential part of machine learning, and it's also
one of the first steps. The Pandas library comes with a variety of utilities that can
be used for data manipulation, cleaning, and visualisation (Matplotlib). When
cleaning data, certain steps must be taken, such as removing outliers, dropping
variables that are not required for the training of the model, dropping null or missing
values, and replacing values that are missing. The purpose of outlier detection and
removal is to eliminate anomalies that resulted from measurement errors. When
attempting to predict rock lithofacies using well log data, it is assumed that each
type of rock lithofacies will produce its own unique set of log readings. All the well
logs need to be consistent and balanced throughout the lithological formation that

is being analysed to make an accurate prediction of the lithofacies.
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3.4. Data Processing

Initial pre-processing of the original raw logs is required to remove any depth-related
anomalies, any inaccuracy from borehole logging, and the presence of hydrocarbons
or other fluids. Feature scaling is used to normalise data variables or features such
that they all fall into the same range, such as -1 to 1 (Youn and Jeong 2009). In most
cases, the range of raw data values fluctuates greatly, which means that without
normalisation, objective functions in machine learning algorithms may not perform

well.

3.5. Feature engineering

This process will involve the use of domain knowledge to choose the most suitable
features for prediction, transforming or creating new features from raw data with

the aim of increasing the accuracy of the prediction.

3.6. Data Augmentation

This is a technique that can be used to artificially expand the size of a training set
by creating modified data from the existing one. This is accomplished using a
technique known as Data Transformation. If you want to avoid overfitting your
model, or if the initial dataset is too small to train on, or even if you just want to

get better performance out of your model, it is a good method to use.

3.7. Classification Algorithms

The data contains numerous discrete labels (or integer values) therefore, this might
be termed a multilabel classification problem. Several machine learning methods
developed during the previous decade might be utilised to tackle this challenge.
Several algorithms were tested during the workflow's development. Random forest,
decision tree classifier, k-nearest neighbour (KNN), SVM, and linear models were

among the techniques investigated.
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3.7.1. Decision tree

A non-parametric supervised learning method applied to regression and
classification problems. It is structured in a hierarchical manner, and its components

include a root node, branches, internal nodes, and leaf nodes.

3.7.2. Random Forest

A random forest (RF) approach is used to classify an instance label based on the label
(i.e., facies label) predicted most frequently by an ensemble of decision trees
(Breiman 2001; James et al. 2013). The term "random forest” (RF) refers to a method
of machine learning that, as its name suggests, includes elements of randomness
within its fundamental operations. Each tree is generated and fitted using a bagging
technique that is based on the random selection (with replacement) of samples from
the training set. This improves the stability and accuracy of the machine learning
classification (Breiman 2001; James et al. 2013). The random forest model helps
reduce bias in the model and improves the performance of the model by taking into
consideration predictions made by many independently created decision trees that
were generated at random and trained using groups of data points that were chosen

at random.

3.7.3. K-Nearest Neighbors (KNN)

KNN is an easy supervised learning method. During training, a KNN model stores the
coordinates and values of every data point it encounters. Using the input data, the
model determines the k-nearest points to make its predictions. The majority class
of the nearest points is the prediction in a classification problem, while the average
of the nearest points is the prediction in a regression problem. While this method
appears simple, it has proven to be quite effective when dealing with large amounts
of data. Changing a model's hyperparameter can result in a noticeable shift in

performance (Mohamed et al. 2019).

3.7.4. Support Vector Machine (SVM)

Support Vector Machines (SVMs) are one of the most widely used machine learning
methods. SVMs find the line that maximises the separation between the points of

each class in a 2-dimensional, 2-class classification problem. The margin is the
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distance between the line and the nearest point classified one way or the other.
Many lines can be used to separate the points, but the goal is to find the line with
the greatest margin. Support vectors are the points closest to the separating line
(Muhammad et al. 2019). A suitable solution to the categorization problem in
practise may include the use of multiple planes. We can see that a few data points
are isolated in one region because a collection of planes divides the space of all

points into parts (Figure 3.1). This is yet another method for identifying outliers.

A
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>
X
Figure 3.1. Illustration of the various hyperplane that could be selected to divide

two groups of data points into distinct categories (Gandhi, 2018).

3.7.5. Categorical boosting (CatBoost).

The recently developed method of machine learning known as Categorical Boosting,
also known by its abbreviation CatBoost, is built from the terms Category and
Boosting. It handles categorical characteristics or predictors without the need for
separate encoding of categorical data, which is commonly needed by other machine
learning approaches as part of the pre-processing stage. This is where the term "Cat”

comes from, as it refers to the fact that it handles categorical characteristics or
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predictors. The term "Boost” is a reference to its functionality, which is based on the
gradient boosting technique that was covered in the section 3.7.8 below (Ghori et
al. 2019)

3.7.6. Light Gradient Boosting

The Light Gradient Boosting model (LGBM) is an extremely effective gradient
boosting algorithm, which excludes a significant portion of the data instances that
have minor gradients when calculating the amount of information gained. This
algorithm is like the conventional Gradient Boosting Decision Trees (GBDT) machine-
learning models with almost the same efficiency as, but it is significantly quicker

throughout the training phase (Ke et al. 2017).

3.7.7. Extreme Gradient Boosting

As an ensemble machine learning technique, gradient boosting can be applied to
problems of predictive modelling in both classification and regression. The
ensembles are constructed with the help of decision tree models. Individual trees
are then added to the ensemble and adjusted to compensate for the errors in
prediction made by earlier models. This is an illustration of a machine learning
model that uses a boosting ensemble. When compared to other Gradient Boosting
implementations, extreme gradient boost stands out because it uses a more
regularised model formalisation to control over-fitting, leading to improved

performance and a reduction in overfitting. according to (Chen and Guestrin 2016).

3.7.8. Gradient Boosting (GB).

For both regression and classification tasks, the machine learning technique known
as "gradient boosting” can generate an ensemble of low-quality prediction models.
This method builds a model incrementally and makes it more generic by allowing
optimization of any loss function that can be differentiated. To put it simply,
gradient boosting is an iterative process that combines multiple weak learners into
a single robust one. Each additional poor learner prompts a re-fit of the model to
generate a more precise prediction of the response variable. As a group, the new

weak learners correlate most strongly with the negative gradient of the loss
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function. Gradient boosting's goal is to strengthen prediction by combining several

weak prediction models.
3.7.9. Logistic regression.

Despite its name, logistic regression is a classification model rather than a regression
model. For binary and linear classification problems, logistic regression is a simpler
and more efficient method. It is a classification model that is simple to implement
and delivers excellent results with linearly separable classes (Subasi 2021). It is a
widely used classification method in industry and it uses the same theory as linear
regression; however, it is a probabilistic approach used for solving binary or

multiclass issues by employing a logistic function (Masapanta 2021).

3.8. Model Evaluation

It is essential to make use of assessment metrics to determine whether a model was
successful after it was developed. In a problem involving pattern recognition or
classification, each individual item in the overall population has both a real label
and a predicted label associated with it. Since both the actual label and the
predicted label have the potential to be either positive or negative, there are a total
of four possible outcomes that can take place because of the actual label and the
predicted label. To begin, what is known as a true positive prediction is when both
the expected labels and the actual labels have a positive value (TP). Second, a true
negative prediction is what we call the situation when both the anticipated labels

and the actual labels are negative (TN).

Third, a false positive prediction (FP) takes place when the actual label is negative,
but the anticipated label is positive. The fourth type of prediction is known as a
false negative (FP), which takes place when the expected label is negative, but the
actual label is positive (Zhou 2020). True positive and true negative predictions are
valid because the anticipated values correspond to the actual values (Figure 3.2).
On the other hand, predictions that are false positive or false negative could be false
predictions because the values that were anticipated for them do not match the

values that occur.
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false negatives true negatives

true positives  false positives

selected elements

Figure 3. 2. Illustration of predicted values and actual values (Chris, 2019).

The percentage of correct predictions made across all the samples determines a
measurement known as accuracy. Figure 3.3 provides a visual representation of some
common metrics, including precision, recall, and specificity. The term "precision,”
which is also known as "positive predictive value,” refers to the percentage of
accurate positive predictions made across all the selected elements (positive
predictions). The proportion of accurate predictions across all relevant factors is
referred to as recall, which is also known as sensitivity or the true positive rate. The
genuine negative rate, which is also referred to as specificity, indicates the

percentage of non-relevant factors that result in accurate negative predictions.
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Figure 3. 3. Illustration of recall, precision, and specificity (Tran, 2016).

In addition, the F1 score is a measurement that takes into consideration both the
accuracy and the recall (Zhou 2020). It is the harmonic average of the accuracy and

recall scores. The equations for calculating the parameters are shown down below.

Accuracy= (TP+TN)/(TP+TN+FP+FN )uuueveereereererreeseeseesesseesensanes 3.1

PreCiSION= TP/ (TPHFP).uuuiceeeeeceereeresresseesessessssssssessssssessssssssesssssenes 3.2
RECAILE TP/ (TPHFN)uueeueeeereeresresseeresssessessessssessassssssssssssessessessessenes s 3.3
F1=2 (Precision - Recall)/ (Precision+Recall)........cceceeeereeueeuees.. 3.4
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CHAPTER FOUR

RESULTS
4.1. Exploratory Data Analysis

4.1.1. Descriptive statistics

Exploration of the data revealed that it contains several glaring inaccuracies; for
instance, the maximum value of GR is 1076, which is significantly higher than what
is typical for any lithology. For sandstone, shale, and carbonate, the value of gamma
ray can range anywhere from 0 to 150, except for organic rich shales and lithology
that contains radioactive minerals like K-feldspar, mica, and zircon. This information
comes from geology. The descriptive statistics presented in table 4.1, as well as the
histogram and boxplot presented in figure 4.1, make it abundantly clear that the GR

data are skewed, which indicates that they include outliers.

According to Table 4.1, the median value of RMED was 1.44, while the mean was
4.98 due to the influence of extreme values. The maximum value of RMED was 1988,
and the lowest value was -0.00842. Boxplots and the histogram can both be used to

identify the data set’s extreme values, also known as outliers.

Table 3.1: Descriptive statistics of the raw data.

DEPTH_MD | RSHA RMED RDEP RHOB GR ROP DTS DRHO
count | 1170511 630650 1131518 | 1159496 | 1009242 | 1170511 | 535071 174613 987857
mean | 2184.087 10.69466 | 4.986978 | 10.69103 | 2.284987 | 70.9137 | 137.368 | 204.655 | 0.012196
std 997.1821 100.6426 | 54.67269 | 113.948 | 0.253284 | 34.23149 | 1539.384 | 71.06846 | 7.477798
min 136.086 0.0001 -0.00842 | 0.031701 | 0.720971 | 0.109284 | -0.11798 | 69.16318 | -7429.34
0.25 1418.597 0.85412 | 0.914086 | 0.91024 | 2.092203 | 47.62722 | 5.628 155.9367 | -0.00925
0.5 2076.605 1.39902 | 1.443584 | 1.439 2.321228 | 68.36763 | 17.8 188.2007 | 0.001752
0.75 2864.393 3.099348 | 2.68093 | 2.55722 | 2.48858 | 89.03551 | 34.81279 | 224.6451 | 0.021702
max 5436.632 2193.905 | 1988.616 | 1999.887 | 3.45782 | 1076.964 | 47015.13 | 676.5781 | 2.836938

The outliers in Gamma ray were removed and replaced with a median value, which

makes the Gamma ray log to become a normal distribution as shown in figure 4.2
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4.1.2 Pearson correlation

It is imperative to eliminate the features with high correlation to minimise or reduce
the amount of overfitting that occurs during the training stage. This assists in
comprehending the internal structure of the data, which in turn helps reduce the

dimensionality. Calculating the degree of correlation that exists between each
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variable in the dataset was accomplished with the Pearson Correlations, and the

results are depicted in figure 4.3.

Pearson correlation has a value between +1 and -1, where +1 implies positive
correlation and -1 denotes negative correlation (Table 4.2). As a result, a stronger
relationship between variables is indicated when the absolute value of the

correlation coefficient gets closer to one.

Table 4.2 Interpretation of correlation coefficient values

Correlation coefficient value Interpretation

+1 Perfect positive/negative

relationship

+0.8 Strong positive/negative

relationship

+0.6 Moderate strong

positive/negative relationship

0 No relationship
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Figure 4.3 Pearson correlation of the dataset feature

There is a strong Pearson correlation of 0.93 between RDEP and RMED log, which is
expected because both are resistivity measurement. Likewise, there is a correlation
of 0.94 between DTC and DTS log, which is also expected as both are sonic log
measurement. Strong correlations between variables may lead to performance
issues for some machine learning models due to the increase in dimensionality that
results from keeping correlated variables. This is because keeping correlated
variables results in an increase in the number of dimensions. Additionally, they might

make the model less scalable and lengthen the amount of time it takes to run.

It was also observed that there is a strong correlation of 0.83 between NPHI and DTC
logs. This was to be expected because it is known that compressional waves are

dependent on the amount of solid minerals present in the rock. This means that the
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less mineral there is in a rock, the higher the porosity, and consequently, the higher

the compressional sonic log.

On the other hand, there is a negative Pearson correlation of 0.84 between RHOB
and DTC, which is also to be expected if we consider the rock compaction and fluid
saturation. This is because the higher the compaction, the higher the bulk density

and the compressional wave velocity, and the lower the compressional slowness.

4.1.3. Density-Neutron cross plot.

For more complex lithology formations, a combination of density and neutron logs
can be an invaluable source of porosity information. More accurate estimates of
porosity can be obtained using the combination than using either tool alone, due to
the ability to make determine lithology and fluid content. Pure lithologies like
sandstone, limestone, or dolomite that is filled with oil or water, can be identified
with the help of the density-neutron cross plot. The cross plot showed that most of
the lithology are overlapping; only the basement, anhydrite, and halite stood out

due to their low porosity (Figure 4.4).
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Figure 4.4. Density-neutron cross plot coloured by lithology

The cross plot shown below reveals that the Rotliegendes Group is primarily
composed of sandstone, whereas the Nordaland Group is a mixture of shale and

sandstone/shale lithologies (Figure 4.5).
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Figure 4.5: Density-neutron cross plot per group coloured by lithology

4.1.4. Exploring the features

There is a total of 12 lithofacies represented in the data, with shale, sandy shale,
and sandstone accounting for more than 70% of the total data. The percentage of
each lithology's appearance in the training, open test, and hidden test subsets is
detailed in Table 4.3 below.
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Lithology presence (\%)
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Figure 4.6: Bar plot showing the lithology presence in the dataset

Figure 4.6 also provides a more visual representation of the lithology distributions
across the various data subsets. The different lithologies may be extremely
important to categorise, but there is a significant class imbalance between them.
Furthermore, it is critical to remember that many lithology types could be
categorised as mineral mixtures. Similar readings for petrophysical properties, as
depicted in figure 4.4, are expected to exist between lithology classes that are

thought to be related.

Table 4.3 Lithofacies presence percentages summary.

Lithology | Code Training | Open | Hidden
Sandstone | 0 14.4 17.6 11.5
Shaly 1 12.9 12.8 10
Shale 2 61.6 61.4 58.7
Marl 3 2.8 2.4 3.6
Dolomite |4 0.1 0.3 0.2
Limestone | 5 4.8 3.5 3.8
Chalk 6 0.9 0.5 2.4
Halite 7 0.7 - 5.3
Anhydrite | 8 0.1 0.1 0.5
Tuff 9 1.3 0.9 0.8
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Coal 10 0.3 0.5 0.2
Basement | 11 0.01 -

As can be seen in Figure 4.7, the geology of the North Sea is predominately
characterised by shale, sand, and carbonates, the majority of which were deposited
during the Jurassic, Cretaceous, and Cenozoic time periods respectively. It is not a
surprise that shale and sandy shale lithology predominate in the North Sea given the
history of its geological development, which was first marked by a significant marine
incursion that stretched the entire length of the North Sea during the transition from
the Triassic to the Jurassic periods of time. Huge deltaic systems consisting of sand,
shale, and coal began to emerge in the late Jurassic period in the northern North
Sea and on the Horda Platform after the maritime incursion had come to an end.
The most significant Jurassic rifting episode took place in the North Sea region during
the Late Jurassic and continued into the Early Cretaceous. This event occurred at
the end of the Jurassic period. Throughout the course of this tectonic episode,
significant block faulting caused uplift and tilting, which led to the formation of
significant local topography, complete with erosion and sediment supply. Both the
most important source rock and the Draupne Formation, which is an important seal
for hydrocarbon traps in the North Sea region, were produced by the accumulation
of extensive sequences of shale in anoxic basins. The Draupne Formation serves as

a crucial seal for hydrocarbon traps in the North Sea region. (NPD, 2015).
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Figure 4.7: Geology and stratigraphic section of the North Sea (NPD 2015).

The datasets include a wide variety of features that can be used as input data. These
data elements include twenty types of well log readings in addition to six additional
metadata characteristics that includes well names, interpretation confidence,
location, and lithostratigraphic data. However, like many situations that occur in
the real world, the dataset has missing values for some of its features. These missing
values could be the result of a wide variety of factors, including economic concerns,
borehole problems, logging instrument failure, telemetry issues, or simply being
excluded on purpose. The SGR, DCAL, ROPA, RMIC, MUDWEIGHT, and DTS logs
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account for most of the missing data in the training set, which are present in only

13, 22, 25, 27, 28, and 32 wells, respectively as shown in figure 4.8.
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Figure 4.8: Percentage distribution of features in train, test and hidden dataset.

In addition, the overlapping of the mixed-based lithofacies, such as sandstones and
shaly-sandstones, could suggest that certain measurements in the dataset
corresponding to these classes were misread or mislabelled. Alternatively, it could
be an inherent characteristic of the formations due to the presence of radioactive
minerals such as k-feldspar, zircon, or mica. In addition, this could be because the
boundaries between facies are continuous rather than discrete, resulting in the

feature space containing measurements from various lithology classes being
superimposed.
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4.2. Data preparation

The first and most critical stage in developing a predictive model is data preparation
(Akinnikawe 2018). This entails data cleaning, outlier removal, and data quality

control.

4.2.1. Data cleaning and outlier removal

Data cleaning is a phase in data processing that involve removing 'NAN' data values
(Fayyad 1996). "NAN" stands for "Not a number,” and it is a particular case in both
floating-point representations of real numbers and floating-point operations. Even
while certain machine learning algorithms can deal with "NAN" data, data cleaning

might potentially mitigate the negative impact of polluted "NAN" data.

From observations GR, WELL, and FORCE_2020_LITHOFACIES_LITHOLOGY which is
the target variable has no missing value while, ROPA, RMIC, DTS, DCAL, SGR, RXO
AND MUDWEIGHT have more than 70% of missing values (Figure 4.9).
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Figure 4.9: Bar plot showing the percentage of missing values in each feature of the

dataset

In respect to well, there are 4 wells with more than 60% of missing data (31/6-5
,33/9-1,35/11-12,31/5-4 S). Well 31/5-4 S has 81% of missing data, and 16 other

wells have more than 50% missing values. The average missing values per well in the
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dataset is 41%. All these missing values can either be replaced or dropped before

modelling, but for this study they were replaced.
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Figure 4.10: Bar plot showing the percentage of null values per measurement.

Outliers are unusual points in a dataset. They are points that do not fit into the
dataset’'s normal or anticipated statistical distribution and can arise for a variety of
causes, including sensor and measurement mistakes, inadequate data sampling, and

unexpected occurrences.

Outliers may be identified in a dataset using a variety of strategies, some of which
utilise visual techniques such as scatterplots (e.g. cross plots) and boxplots, while
others rely on univariate statistical methods (e.g. Z-score) or even unsupervised
machine learning algorithms. For this study, four methods such as isolation forest,
standard deviation outlier, local outlier factor and one class support vector machines
was tested on the train dataset. Comparing the four method of outlier removal with
the data before outlier was removed using box plot revealed that standard deviation
filter is the better method out of the four (Figure 4.11). The local outlier factor
removed 30% of the dataset which is the highest percentage among the four methods
used (Table 4.4).
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Figure 4.11: Box plot comparing the distribution of some logs in the data before

outlier removal and 4 other outlier method.

Table 4.4: Table showing the percentage of points removed for different outlier

methods

Outlier methods | Points  after | Number of  points | Percentage of point
outliers removed removed
removal

Local outlier | 819358 351153 30

Factor

Isolation Forest 1053460 117051 10

Standard 1046472 124039 11

Deviation

One-class SVM 1053725 116786 10
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4.2.2. Well log quality check

The quality of well logs can also be affected by bad hole, which can be caused by
borehole enlargement, shale swelling, compacted rocks and variations in stresses
acting on those rocks such as the mud weight. Measurements of the borehole’s
diameter and profile can be obtained from the Caliper Log, and the bit size curve

can be used to determine the diameter of the bit used to bore the well (Figure 4.12).
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Figure 4.12: Typical caliper responses to various lithologies (Glover 2014)

To identify the wells affected by bad hole, a log was created by subtracting the
caliper log from the bit size log. Negative values indicate that the borehole has
decreased (e.g., shale swelling), whereas positive numbers indicate that the
borehole has collapsed. From figure 4.13 below well 15/9-15,16/14-1 and 16/1-2,

41



contain bad hole data which might be caused

borehole (cave in or collapse).
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Figure 4.13: Cross plot of neutron density log showing bad hole data

4.2.3. Data pre-processing

With exception of few, most machine learning algorithms don’t perform well when

numerical values have different scales which is what is evident in our dataset. Since

most of the well log reading are in different scales and several magnitudes in terms

of range, it is important we bring all variable to same scale and range. This is done

to improve the performance of the machine learning algorithms. To achieve this, |

tested four different normalisation methods: MinMax scaler, standardisation,
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robustscaler, and normalisation. Based on the boxplot in figure 4.14 the MinMax

scaler method was chosen as the best normalisation method for the data.
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Figure 4.14: Wireline logs prior to scaling and after application of a min-max scaler,

standard-scaler, and normalizer.

On the other hand, the categorical features such as well, group, formation, and
lithology (target label) were label encoded by using a cat encoding. The missing
values were replaced by the median values for all the well logs in the dataset.
Another method of handling missing values is to predict the well log and impute the
prediction to replace the null values. From feature selection and knowledge of
geology, GR, NPHI, RHOB, DTS, and DTC logs are some of the most important
features for identifying lithofacies. DTS, NPHI, RHOB and DTC have 85%,35%,14%,
and 7% of missing values respectively. The extreme gradient boosting XGB regressor
was used to train and predict the four logs and this was used to replace the null

values in the logs.
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4.3. Feature Engineering

Regarding feature engineering, we employed several techniques to enhance the

predictive ability of the models.

4.3.1. Feature selection

When it comes to machine learning, one of the most important goals of the feature
selection process is to choose the input features for the machine learning model in
a way that considers the relationship between the features and the model output.
Feature selection can improve model performance with a lower error rate, while
also improving model generalisation and avoiding the problem of overfitting. To
select the best characteristics, the K-best, Logistic regression, and variance methods
were utilised. The RDEP, GR, NPHI, DTC, and RSHA features were chosen as the top
five by each of the research approaches. For K-best and logistic regression, the least
important five features are DRHO, ROP, SP, PEF, and RMED. For the variance
method, the least important five features are X LOC, ROP, SP, PEF, and RMED (Figure
4.15 and 4.16).
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Figure 4.15: Bar chart of the distribution of K best feature importance
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Figure 4.16: Bar chart of the distribution of K best feature importance

4.3.2. Feature extraction

In addition to the 29 features that were provided, four of which were imputed and

improved with the help of machine learning, seven additional features were

designed and included in the original datasets so that they could be used during the

training, validation, and prediction stages.

1.

Shale volume calculation: the shale volume was estimated from GR log using
the equation below.

VSH_GR=GR-GR_Ma/GR_SH-GR_MQ ccureueeueereerecrecreereerecnennee . 4.1

Porosity: is a measurement that indicates how much fluid a rock can hold.
When determining a rock'’s porosity, the pore volume of the rock is divided by
the rock’s bulk volume (Tiab and Donaldson 1996). The term "total porosity"
refers to the proportion of a rock's total pore space to the total volume of the
rock itself. Neutron, density, and sonic logs are used in the calculation to
arrive at the total porosity. The effective porosity of a material is calculated
by taking the total porosity and subtracting the proportion of the pore space
that is taken up by shale or clay (Crain 2019). The porosity can be determined

by using the equation that is provided below.
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4.4, Baseline Model.

There were nine baseline ML models that were designed for this study to evaluate
which model best classifies the lithology. A cross-validation methodology was
applied to ten stratified K-Folds taken from the training set, each of which contained
a sample of 100,000 observations. This method takes the train dataset and divides
itinto ten subsets, then iterates using nine folds for training and one fold for testing.
It also ensures that each data subset has the same lithology as the original training
set, which helps to generalise the performance and prevents bias toward the
lithology that is most common. Given that each model was trained and validated
using only the training data without any attempt to regularise their learning process,
these results may be susceptible to overfitting. This is because each model was

trained and validated using only the training data.

Four different scenarios based on data pre-processing were also tested on each
model to determine which type of data pre-processing improves the model

performance.

The first scenario is the dataset imputed with median values, in this case the Random
Forest classifier performed best with 91.4% accuracy, and support vector classifier

is the least with 47.6% accuracy.

The second scenario is the dataset imputed with predicted well logs for DTC, DTS,
RHOB and NPHI while other null values were imputed with the median value, in this
case the Random Forest classifier performed best with 91.3% accuracy, and support
vector classifier is the least with 48.8% accuracy. There is no improvement with
random forest, but there is a slight improvement with the support vector and Logistic

regression.
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The third scenario is the dataset with additional extracted feature such as PHIT,
PHIE, SI, PI, and so on, while other null values were imputed with the median value,
in this case the Random Forest classifier performed best with 91.2% accuracy, and
support vector classifier is the least with 47.6% accuracy. There is a slight
improvement of 2% and 17% with KNN model when comparing scenario 1 and 3 and
scenario 1 and 2 respectively. On the other hand, there is little or no improvement

for other models.

The fourth scenario is the dataset with outliers removed by SVM method, while other
null values were imputed with the median value, in this case the Random Forest
classifier performed best with 91.2% accuracy, and support vector classifier is the
least with 47.4% accuracy. Overall, removing the outliers did not improve the

performance of any of the model, instead the performance reduced (Table 4.5).

The fifth scenario is the dataset with data augmentation, comparing this to the base
model, only the logistic model accuracy increased by 0.5%, the model accuracy

however decreased in decision tree, RF, XGB, CatBoost, and KNN.

Table 4.5: Comparing different scenario and model for 100,000 sample of the data.

Model Scenario 1: | Scenario 2: | Scenario 3: Scenario 4: | Scenario 5:
Base Model | Model with | Model  with | Model with | Model with
with predicted new features | SVM filter | data
median missing log augmentation
imputation

Logistic 0.478 0.505 0.491 0.475 0.483

Regression

Decision 0.864 0.865 0.864 0.862 0.851

Trees

Classifier

Random 0.914 0.913 0.912 0.912 0.911

Forest

Classifier

XGB 0.897 0.896 0.896 0.894 0.894

Classifier
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CatBoost 0.891 0.891 0.89 0.888 0.884
Gradient 0.836 0.834 0.834 0.831 0.836
Boosting

Classifier

LGBM 0.785 0.784 0.787 0.771 0.786
K-Nearest 0.88 0.748 0.896 nan 0.867
Neighbor

Classifier

Support 0.476 0.488 0.476 0.474 0.476
Vector

Machines

Some of this model will be further examined, modified, and tested on the open and
hidden dataset, hyperparameter tuning will also be performed to select the best

parameter for each model.

4.5. Random Forest

4.5.1 Random Forest base model
A base model was designed and trained to serve as a basis of comparison with
subsequent model, to determine if creation of new features, hyperparameter

tuning, data augmentation will improve the performance of the model.

With 100,000 sample of the dataset, an accuracy of 91% was achieved by the Random
Forest base model after it was trained and validated on 10 different stratified k-
folds as discussed earlier in section 4.4. To investigate further, RF base model was
trained on the entire train dataset, and this achieved an accuracy of 100%, 78% and

80% on the train set, open test set and hidden set respectively (Table 4.6).

48



Table 4.6: Reports for the training, open, and hidden datasets generated by the

Random Forest Classification algorithm.

Training set Open set Hidden set
Lithology Precision Recall F1-score PrecisiorRecall F1-score PrecisiorRecall F1-score
Sandstone (0) 1 1 1 0.8 0.83 0.81 0.77 0.77 0.77
Sandstone/Shale (1) 1 1 1 0.83 0.93 0.87 0.85 0.96 0.9
Shale (2) 1 1 1 0.5 0.27 0.35 0.55 0.25 0.34
Marl (3) 1 1 1 0.43 0.55 0.48 0.59 0.63 0.61
Dolomite (4) 1 1 1 0.71 0.02 0.03 0.62 0.47 0.53
Limestone (5) 1 1 1 0 0 0 0 0 0
Chalk (6) 1 1 1 0.46 0.08 0.13 0.4 0.23 0.29
Halite (7) 1 1 1 0 0 0 0.82 0.6 0.69
Anhydrite (8) 1 1 1 _ _ _ 0.99 0.99 0.99
Tuff (9) 1 1 1 0.75 0.51 0.6 0.88 0.62 0.73
Coal (10) 1 1 1 _ _ _ _ _ _
Basement (11) 1 1 1 0.75 0.49 0.6 0.7 0.46 0.55
Penalty matrix score -2.99 -0.583 -0.553
accuracy 1 0.78 0.8
RMSE 0.0018 1.311 1.323
Weighted avg 1 1 1 0.75 0.78 0.75 0.77 0.8 0.78

4.5.2. Random forest with hyperparameter

A hyper-parameter optimization process was carried out based on a grid parameter
search technique. The parameter values that were used can be found in table 4.7
below. The hyper-parameter grid search was carried out on a 50,000 sample of the
dataset to save time, while cross validating the training with 10 stratified folds to
prevent overfitting the training data. The optimal hyper-parameters are provided

below, and best score of 90% was achieved during the tuning.

Table 4.7: Hyperparameter values for Random forest.

Best

Hyper parameter | Values value

100, 150
n_estimators 150, 200
max_depth 10,15,20 | 20

gini, entropy
criterion entropy

auto, auto
max_features sqrt
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min_samples_leaf | 1,2,4 1

After training a new model with the best hyper-parameters, the final model achieved
accuracies of 98%, 79%, and 80%, respectively, on the train, open, and hidden set.
Table 4.8 provides a visual representation of the detailed classification reports that

are broken down by each class of lithology.

Table 4.8: Reports for the training, open, and hidden datasets generated by the

Random Forest Classification algorithm with hyperparameter.

Training set Open set Hidden set
Lithology Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
Sandstone (0) 0.99 0.97 0.98 0.81 0.82 0.82 0.78 0.78 0.78
Sandstone/Shale (1) 0.98 1 0.99 0.83 0.95 0.88 0.85 0.95 0.9
Shale (2) 0.97 0.94 0.96 0.61 0.29 0.4 0.59 0.26 0.36
Marl (3) 1 0.91 0.95 0.41 0.57 0.47 0.59 0.61 0.6
Dolomite (4) 1 1 1 0 0 0 0.62 0.47 0.53
Limestone (5) 1 0.66 0.8 0 0 0 0 0 0
Chalk (6) 0.99 0.98 0.99 0.62 0.07 0.13 0.34 0.27 0.3
Halite (7) 1 1 1 0 0 0 0.73 0.62 0.67
Anhydrite (8) 1 1 1 _ _ _ 0.99 0.99 0.99
Tuff (9) 1 0.98 0.99 0.77 0.52 0.62 0.88 0.65 0.75
Coal (10) 1 1 1 _ _ _ _ _ _
Basement (11) 0.99 0.99 0.99 0.72 0.48 0.58 0.66 0.55 0.6
Penalty matrix score -0.0501 -0.551 -0.559
accuracy 0.98 0.79 0.8
RMSE 0.293 1.304 1.361
Weighted avg 0.98 0.98 0.98 0.77 0.79 0.77 0.78 0.8 0.78

4.5.3. Random forest with data augmentation

Furthermore, a new model was trained with augmented data. This model achieved
an accuracy of 100% on the training set, 78% on the open set, and 80% on the hidden
set. Table 4.9 provides a visual representation of the detailed classification reports
by lithology class. There is no significant improvement with the performance of

model compared to the model without data augmentation.
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Table 4.9. Reports for the training, open, and hidden datasets from the Random

Forest Classification algorithm, completed with data augmentation.

Training set Open set Hidden set
Lithology Precision Recall F1-scorePrecision Recall F1-scorePrecision Recall F1-score
Sandstone (0) 1 1 1 0.79 0.82 0.81 0.77 0.78 0.78
Sandstone/Shale (1) 1 1 1 0.83 0.93 0.88 0.85 0.97 0.91
Shale (2) 1 1 1 0.54 0.31 0.39 0.57 0.26 0.36
Marl (3) 1 1 1 0.43 0.56 0.49 0.61 0.62 0.62
Dolomite (4) 1 1 1 0.75 0.1 0.18 0.62 0.47 0.54
Limestone (5) 1 1 1 0 0 0 0 0 0
Chalk (6) 1 1 1 0.33 0.05 0.09 0.44 0.26 0.33
Halite (7) 1 1 1 0 0 0 0.76 0.64 0.7
Anhydrite (8) 1 1 1 _ _ _ 0.99 0.99 0.99
Tuff (9) 1 1 1 0.79 0.52 0.62 0.88 0.63 0.73
Coal (10) 1 1 1 _ _ _ _ _ -
Basement (11) 1 1 1 0.72 0.49 0.59 0.7 0.57 0.63
Penalty matrix score -1.708 -0.578 -0.535
accuracy 1 0.78 0.8
RMSE 0.009 1.323 1.294
Weighted avg 1 1 1 0.76 0.78 0.76 0.77 0.8 0.78

4.5.4. Random forest with data augmentation and hyperparameters

Furthermore, a new model was trained with augmented data and hyperparameters.
This model achieved an accuracy of 99% on the training set, 79% on the open set,
and 80% on the hidden set. Table 4.10 provides a visual representation of the
detailed classification reports by lithology class. There is no significant improvement

with the performance of model compared to the model without data augmentation.
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Table 4.10. Reports for the training, open, and hidden datasets from the Random

Forest Classification algorithm,

augmentation.

Lithology
Sandstone (0)
Sandstone/Shale (1)
Shale (2)

Marl (3)
Dolomite (4)
Limestone (5)
Chalk (6)
Halite (7)
Anhydrite (8)
Tuff (9)

Coal (10)
Basement (11)

Penalty matrix score

accuracy
RMSE
Weighted avg

Training set

Precision
1
0.98
0.98

0.99

Recall
0.98
1
0.95
0.93
1
0.75
0.99
1
1
0.99

0.99

-0.038

0.99

0.243

0.99

completed with hyperparameter and data

Open set
F1-score Precision Recall
0.99 0.78 0.82
0.99 0.82 0.94
0.97 0.6 0.28
0.96 0.47 0.57
1 0 0
0.86 0 0
0.99 0.42 0.05
1 0 0
1 _
1 0.83 0.52
1 _
0.99 0.72 0.47
-0.565
0.79
1.322
0.98 0.76 0.79

4.5.5. Random forest with feature engineering

F1-score Precision Recall

0.8
0.88
0.38
0.51

0
0
0.09

0.64

0.57

0.76

Hidden set
0.77 0.78
0.85 0.96
0.58 0.27
0.62 0.61
0.62 0.47

0 0
0.34 0.27
0.75 0.62
0.99 0.99
0.88 0.66
0.69 0.57

-0.557
0.8
1.341
0.78 0.8

F1-score
0.77
0.9
0.37
0.62
0.53
0
0.3
0.68
0.99
0.75

0.62

0.78

To further investigate if the model performance can be boosted, a new model was

trained with hyper-parameters and 7 additional created features. This model

achieved an accuracy of 98% on the training set, 77% on the open test, and 80% on

the hidden test. Table 4.11 provides a visual representation of the detailed

classification reports by lithology class. There is no significant improvement with the

overall performance of the model compared to the model without feature

engineering.
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Table 4.11: Reports for the training, open, and hidden datasets from the Random

Forest Classification algorithm, completed with hyperparameter and feature

engineering.

Training set Open set Hidden set
Lithology Precision Recall ~ F1-score Precision Recall F1-score Precision Recall F1-score
Sandstone (0) 1 1 1 0 0 0 0.74 0.82 0.77
Sandstone/Shale (1) 1 1 1 _ _ _ _ _ _
Shale (2) 1 1 1 0 0 0 0.64 0.47 0.54
Marl (3) 1 0.98 0.99 0.84 0.54 0.66 0.87 0.66 0.75
Dolomite (4) 1 0.75 0.86 0 0 0 0 0 0
Limestone (5) 1 1 1 0 0 0 0.99 0.99 0.99
Chalk (6) 1 0.92 0.96 0.52 0.48 0.5 0.6 0.64 0.62
Halite (7) 0.99 0.98 0.99 0.39 0.03 0.06 0.34 0.26 0.29
Anhydrite (8) 0.99 0.98 0.99 0.89 0.7 0.79 0.76 0.78 0.77
Tuff (9) 0.98 0.95 0.96 0.64 0.16 0.26 0.57 0.28 0.38
Coal (10) 0.98 1 0.99 0.77 0.99 0.86 0.86 0.95 0.9
Basement (11) 0.99 0.99 0.99 0.75 0.34 0.47 0.65 0.59 0.62
Penalty matrix score -0.056 -0.747 -0.681
accuracy 0.98 0.77 0.8
RMSE 0.316 1.07 1.075
Weighted avg 0.98 0.98 0.98 0.75 0.77 0.73 0.78 0.8 0.79

4.6. Extreme Gradient boosting (XGB) model

4.6.1. Extreme Gradient boosting (XGB) base model
With 100,000 sample of the dataset, an accuracy of 89.7% was achieved by the XGB

base model after it was trained and validated on 10 different stratified k-folds as

discussed earlier in section 4.4.

The XGB base model on the entire train set was able to achieve an accuracy of 82%
on the train set, 76% in the open set and 78% in the hidden set, respectively (Table
4.12.). However, because XGB has performed exceptionally well in several machine
learning competitions for classification and regression tasks, | believed that careful
selection of appropriate hyper-parameters might be able to improve its overall

performance.
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Table 4.12: XGB base model Classification reports for the training, open, and hidden

datasets.

Training set Open set Hidden set
Lithology Precision Recall  F1-score Precision Recall F1-score Precision Recall F1-score
Sandstone (0) 0.78 0.72 0.74 0.74 0.78 0.76 0.75 0.56 0.64
Sandstone/Shale (1) 0.83 0.97 0.89 0.81 0.93 0.87 0.83 0.97 0.9
Shale (2) 0.76 0.35 0.48 0.42 0.24 0.31 0.49 0.27 0.34
Marl (3) 0.84 0.58 0.69 0.42 0.22 0.29 0.52 0.51 0.51
Dolomite (4) 0.9 0.9 0.9 0 0 0 0.56 0.58 0.57
Limestone (5) 0.79 0.19 0.3 0 0 0 0.29 0.49 0.37
Chalk (6) 0.79 0.55 0.65 0.38 0.07 0.12 0.48 0.25 0.33
Halite (7) 0.93 0.89 0.91 0.96 0.61 0.75 0.94 0.35 0.51
Anhydrite (8) 0.99 1 0.99 _ _ _ 0.99 0.96 0.97
Tuff (9) 0.87 0.41 0.56 0.83 0.43 0.57 0.85 0.48 0.61
Coal (10) 1 0.83 0.91 _ _ _ _ _ _
Basement (11) 0.75 0.78 0.76 0.7 0.72 0.71 0.6 0.51 0.55
Penalty matrix score -0.4742 -0.636 -0.614
accuracy 0.82 0.76 0.78
RMSE 1.196 1.339 1.388
Weighted avg 0.81 0.82 0.8 0.72 0.76 0.73 0.75 0.78 0.75

4.6.2. Extreme Gradient boosting (XGB) with hyperparameters

Because the hyperparameter tuning for XGB model was expensive and time
consuming, | was not able to perform a Gridsearch to select the best parameters.
However, | used a set of hyperparameters from a previous work (Masapanta 2021) as

shown in table 4.13.

Table 4.13: Selected hyperparameters for XGB model.

Selected
Hyper parameter | value
n_estimators 1000
max_depth 4
booster gbtree
objective multi:softprob
learning_rate 0.075
random_state 42
subsample 1
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colsample_bytree | 1
verbose 2020
reg_lambda 1500

After training a new model with the selected hyper-parameters above, the final
model achieved accuracies of 86%, 80%, and 81%, respectively, on the train set, open
set, and hidden set. Table 4.14 provides a visual representation of the detailed
classification reports that are broken down by each class of lithology. Compared to
the base model, there is 4% and 3% increase in the open and hidden set accuracy

when hyperparameters was used.

Table 4.14. Reports for the training, open, and hidden datasets from the XGB

Classification algorithm completed with hyperparameter.

Training set Open set Hidden set

Lithology Precision Recall  F1-score Precision Recall F1-score Precision Recall F1-score
Sandstone (0) 0.83 0.8 0.82 0.84 0.81 0.82 0.74 0.78 0.76
Sandstone/Shale (1) 0.88 0.97 0.92 0.83 0.96 0.89 0.87 0.94 0.9
Shale (2) 0.77 0.57 0.65 0.6 0.29 0.39 0.55 0.36 0.43
Marl (3) 0.84 0.65 0.73 0.47 0.52 0.5 0.71 0.67 0.69
Dolomite (4) 0.89 0.9 0.9 0 0 0 0.8 0.79 0.8
Limestone (5) 0.63 0.12 0.2 0 0 0 0 0 0
Chalk (6) 0.8 0.66 0.73 0.64 0.15 0.25 0.29 0.24 0.26
Halite (7) 0.91 0.88 0.9 0.97 0.29 0.44 0.82 0.5 0.62
Anhydrite (8) 0.99 0.99 0.99 _ _ _ 0.99 0.99 0.99
Tuff (9) 0.82 0.53 0.65 0.79 0.58 0.67 0.83 0.67 0.74
Coal (10) 0.98 0.44 0.6 _ _ _ _ _ _
Basement (11) 0.8 0.85 0.83 0.72 0.65 0.68 0.62 0.76 0.68
Penalty matrix score -0.369 -0.534 -0.54

accuracy 0.86 0.8 0.81

RMSE 1.069 1.249 1.374

Weighted avg 0.86 0.86 0.86 0.77 0.8 0.77 0.79 0.81 0.8

4.6.3. Extreme Gradient boosting (XGB) with data augmentation

To boost the classification accuracy, a new model was trained with data
augmentation. This model achieved an accuracy of 93% on the training set, 76% on
the open set, and 79% on the hidden set. Table 4.15 provides a visual representation

of the detailed classification reports by lithology class. Compared to the base model,
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there is a 11% accuracy increase in the train set, while in the open and hidden set

there is no significant improvement with the performance of model.

Table 4.15: Reports for the training, open, and hidden datasets from the XGB

Classification algorithm completed with data augmentation.

Training set Open set Hidden set
Lithology Precision Recall ~ F1-score Precision Recall F1-score Precision Recall F1-score
Sandstone (0) 0.9 0.9 0.9 0.8 0.8 0.8 0.71 0.76 0.73
Sandstone/Shale (1) 0.94 0.98 0.96 0.84 0.88 0.86 0.89 0.91 0.9
Shale (2) 0.86 0.76 0.81 0.42 0.35 0.38 0.54 0.46 0.5
Marl (3) 0.9 0.79 0.85 0.45 0.6 0.51 0.61 0.62 0.62
Dolomite (4) 0.99 0.99 0.99 0 0 0 0.63 0.48 0.54
Limestone (5) 0.94 0.78 0.85 0 0 0 0.4 0.15 0.21
Chalk (6) 0.91 0.88 0.89 0.12 0.07 0.09 0.28 0.28 0.28
Halite (7) 1 1 1 1 0.22 0.36 0.77 0.74 0.75
Anhydrite (8) 1 1 1 _ _ _ 0.98 1 0.99
Tuff (9) 0.96 0.95 0.96 0.76 0.6 0.67 0.7 0.63 0.66
Coal (10) 1 1 1 _ _ _ _ _ _
Basement (11) 0.95 0.98 0.96 0.76 0.61 0.68 0.61 0.54 0.57
Penalty matrix score -0.199 -0.648 -0.587
accuracy 0.93 0.76 0.79
RMSE 0.614 1.383 1.431
Weighted avg 0.92 0.93 0.92 0.74 0.76 0.75 0.79 0.79 0.79

4.6.4. Extreme Gradient boosting (XGB) with data augmentation and

hyperparameters

To boost classification accuracy, a new model was trained with selected hyper-
parameters and data augmentation. This model achieved an accuracy of 89% on the
training set, 79% on the open set, and 80% on the hidden set. Table 4.16 provides a
visual representation of the detailed classification reports by lithology class.
Comparing this model to the model with data augmentation and no hyperparameter,
it can be observed that there is no improvement in the accuracy of the train set,
while there is a 3% and 1% increase in accuracy in the open and hidden set

respectively.
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Table 4.16: Reports for the training, open, and hidden datasets from the XGB

Classification algorithm completed with augmentation and hyperparameter.

Training set
Lithology Precision Recall
Sandstone (0) 0.87 0.85
Sandstone/Shale (1) 0.92 0.97
Shale (2) 0.81 0.67
Marl (3) 0.85 0.72
Dolomite (4) 0.94 0.94
Limestone (5) 0.72 0.29
Chalk (6) 0.85 0.78
Halite (7) 0.95 0.94
Anhydrite (8) 1 1
Tuff (9) 0.84 0.75
Coal (10) 1 0.87
Basement (11) 0.88 0.93
Penalty matrix score -0.282
accuracy 0.89
RMSE 0.859
Weighted avg 0.89 0.89

F1-score Precision Recall

0.86
0.94
0.74
0.78
0.94
0.41
0.82
0.94
1
0.79
0.93
0.9

0.89

Open set
0.85 0.8
0.83 0.94
0.54 0.35
0.48 0.6
0.96 0.07
0 0
0.66 0.14
1 0.16
0.74 0.67
0.78 0.65

-0.543

0.79

1.225

0.78 0.79

Hidden set
F1-score Precision Recall
0.82 0.74 0.83
0.88 0.88 0.93
0.42 0.54 0.33
0.53 0.64 0.64
0.14 0.68 0.5
0 0.05 0.02
0.23 0.29 0.29
0.28 0.81 0.66
0.99 0.99
0.7 0.75 0.73
0.71 0.62 0.65
-0.565
0.8
1.407
0.78 0.79 0.8

4.6.5. Extreme Gradient boosting (XGB) with feature engineering

F1-score

0.78

0.9
0.41
0.64
0.58
0.03
0.29
0.73
0.99
0.74

0.63

0.79

To further investigate the possibility of improving the model performance, a new

model was trained with the selected hyper-parameters and 7 additional created

features. This model achieved an accuracy of 88% on the training set, 80% on the

open set, and 80% on the hidden set. Table 4.17 provides a visual representation of

the detailed classification reports by lithology class. There is no significant

improvement with the performance of model compared to the model without

feature engineering.
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Table 4.17: Reports for the training, open, and hidden datasets from the XGB

Classification algorithm completed with hyperparameter and feature engineering.

Training set Open set Hidden set
Lithology Precision Recall ~ F1-score Precision Recall F1-score Precision Recall F1-score
Sandstone (0) 0.92 0.91 0.92 1 0.07 0.13 0.78 0.59 0.67
Sandstone/Shale (1) 0.99 0.8 0.88 _ _ _ _ _ _
Shale (2) 0.92 0.92 0.92 1 0 0 0.74 0.49 0.59
Marl (3) 0.81 0.65 0.72 0.61 0.68 0.64 0.82 0.68 0.74
Dolomite (4) 0.63 0.15 0.24 0 0 0 0.07 0.01 0.02
Limestone (5) 0.99 0.99 0.99 _ _ _ 0.99 0.99 0.99
Chalk (6) 0.85 0.67 0.75 0.5 0.52 0.51 0.62 0.65 0.63
Halite (7) 0.82 0.72 0.77 0.66 0.15 0.25 0.3 0.27 0.29
Anhydrite (8) 0.85 0.83 0.84 0.83 0.81 0.82 0.73 0.81 0.77
Tuff (9) 0.79 0.62 0.69 0.58 0.33 0.42 0.53 0.31 0.39
Coal (10) 0.9 0.97 0.93 0.83 0.95 0.88 0.88 0.93 0.9
Basement (11) 0.84 0.89 0.86 0.74 0.63 0.68 0.61 0.66 0.63
Penalty matrix score -0.414 -0.671 -0.694
accuracy 0.88 0.8 0.8
RMSE 0.757 1.041 1.079
Weighted avg 0.87 0.88 0.87 0.78 0.8 0.77 0.78 0.8 0.79

4.7. KNN model
4.7.1. KNN base model

The non-parametric K-nearest neighbour base model of 100,000 samples produced
an accuracy of 88% through cross validation on 10-stratified k-folds. However,
despite the promising result demonstrated in the 100,000 sample base model, when
KNN base model was trained on the entire train dataset, it achieved 96%, 57% and
55% accuracy on train set, open set and hidden set respectively (Table 4.18). To
investigate the possibility of improving the model performance, a hyper-parameter

optimization was also carried out.
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Table 4.18: KNN base model Classification reports for the training, open, and hidden

datasets.

Training set Open set Hidden set
Lithology Precision Recall F1-score Precision Recall F1-scorePrecision Recall F1-score
Sandstone (0) 0.95 0.95 0.95 0.53 0.47 0.5 0.48 0.52 0.5
Sandstone/Shale (1) 0.97 0.98 0.98 0.78 0.71 0.75 0.77 0.63 0.69
Shale (2) 0.92 0.91 0.92 0.2 0.21 0.21 0.17 0.27 0.21
Marl (3) 0.95 0.86 0.9 0.13 0.4 0.2 0.37 0.56 0.45
Dolomite (4) 0.97 0.97 0.97 0 0 0 0.45 0.52 0.48
Limestone (5) 0.88 0.63 0.73 0 0 0 0 0 0
Chalk (6) 0.95 0.93 0.94 0.24 0.12 0.16 0.36 0.26 0.3
Halite (7) 0.96 0.93 0.95 0 0 0 0.71 0.58 0.64
Anhydrite (8) 0.99 1 0.99 _ _ _ 0.99 0.65 0.78
Tuff (9) 0.92 0.8 0.85 0.55 0.38 0.45 0.77 0.17 0.28
Coal (10) 0.98 1 0.99 _ _ _ _ _ _
Basement (11) 0.95 0.97 0.96 0.13 0.25 0.17 0.03 0.19 0.05
Penalty matrix score -0.108 -1.137 -1.223
accuracy 0.96 0.57 0.55
RMSE 0.56 2.005 2.806
Weighted avg 0.96 0.96 0.96 0.61 0.57 0.59 0.63 0.55 0.58

4.7.2. KNN with hyperparameters

A hyper-parameter optimization process was carried out based on a grid parameter
search technique. The parameter values that were used can be found in table 4.19
below. The hyper-parameter grid search was carried out on a 50,000 sample of the
dataset while cross validating the training with 10 stratified folds to prevent
overfitting the training data. The optimal hyper-parameters are provided below, and

the process achieved a score of 88%.

Table 4.19: Hyperparameter values for KNN model

Hyper Best value
parameter Values

n_estimators 1,10,1 1

leaf_size 20,40,1 20

uniform, uniform

weights distance

minkowski, | minkowski

metric chebyshev
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After training a new model with the most appropriate hyper-parameters, the final
model achieved accuracies of 100%, 61%, and 56%, respectively, on the training,
open test, and hidden test. Table 4.20 provides a visual representation of the
detailed classification reports that are broken down by each class of lithology.
Comparing this model to the base model in section 4.7.1,there is 4%,4% and 1% in

the train, open and hidden dataset respectively.

Table 4.20: KNN Classification reports for the training, open, and hidden datasets

with hyperparameters.

Training set Open set Hidden set

Lithology Precision Recall F1-scorePrecision Recall F1-scorePrecision Recall F1-score
Sandstone (0) 1 1 1 0.57 0.59 0.58 0.53 0.54 0.53
Sandstone/Shale (1) 1 1 1 0.81 0.73 0.77 0.77 0.6 0.68
Shale (2) 1 1 1 0.23 0.25 0.24 0.21 0.37 0.27
Marl (3) 1 1 1 0.17 0.46 0.25 0.35 0.57 0.43
Dolomite (4) 1 1 1 0 0 0 0.42 0.46 0.44
Limestone (5) 1 1 1 0.02 0.01 0.01 0 0 0
Chalk (6) 1 1 1 0.29 0.15 0.2 0.38 0.29 0.33
Halite (7) 1 1 1 0.96 0.54 0.69 0.55 0.62 0.59
Anhydrite (8) 1 1 1 0 0 0 0.98 0.7 0.82
Tuff (9) 1 1 1 0.58 0.4 0.47 0.57 0.16 0.25
Coal (10) 1 1 1 _ _ _ _ _ _
Basement (11) 1 1 1 0.2 0.14 0.16 0.1 0.47 0.17
Penalty matrix score 0 -1.036 -1.186

accuracy 1 0.61 0.56

RMSE 0 1.722 2.474

Weighted avg 1 1 1 0.64 0.61 0.62 0.64 0.56 0.59

4.7.3. KNN with augmented data and hyperparameters.

To boost classification accuracy, a new model was trained with selected hyper-
parameters and augmented data. This model achieved an accuracy of 95% on the
training set, 57% on the open set, and 59% on the hidden set. Table 4.21 provides a
visual representation of the detailed classification reports by lithology class.
Comparing this model to the model with hyperparameter in section 4.7.2., it can be
observed that there is a 5% and 4% decrease in accuracy of the train and open set

respectively, while there is a 3% increase in the accuracy of the hidden set.
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Table 4.21: KNN Classification reports for the training, open, and hidden datasets

on augmented data with hyperparameters.

Training set Open set Hidden set

Lithology Precision Recall F1-scorePrecision Recall F1-scorePrecision Recall F1-score
Sandstone (0) 0.93 0.93 0.93 0.54 0.46 0.5 0.46 0.54 0.5
Sandstone/Shale (1) 0.96 0.98 0.97 0.75 0.72 0.74 0.76 0.69 0.72
Shale (2) 0.9 0.86 0.88 0.2 0.22 0.21 0.21 0.28 0.24
Marl (3) 0.94 0.83 0.88 0.15 0.35 0.21 0.53 0.53 0.53
Dolomite (4) 0.97 0.96 0.96 0 0 0 0.45 0.52 0.48
Limestone (5) 0.85 0.55 0.67 0.01 0.01 0.01 0 0 0
Chalk (6) 0.94 0.91 0.92 0.27 0.12 0.17 0.33 0.26 0.29
Halite (7) 0.95 0.9 0.93 0 0 0 0.78 0.17 0.28
Anhydrite (8) 0.99 1 0.99 _ _ _ 0.98 0.61 0.75
Tuff (9) 0.93 0.78 0.85 0.58 0.32 0.41 0.49 0.08 0.13
Coal (10) 0.99 0.99 0.99 _ _ _ _ _ _
Basement (11) 0.92 0.95 0.94 0.16 0.31 0.21 0.03 0.2 0.06
Penalty matrix score -0.142 -1.104 -1.139

accuracy 0.95 0.57 0.59

RMSE 0.648 1.947 2.824

Weighted avg 0.95 0.95 0.95 0.6 0.57 0.58 0.64 0.59 0.61

4.7.4. KNN model with feature engineering

To further investigate the possibility of improving the model performance, a new
model was trained with hyper-parameters and 7 additional created features. This
model achieved an accuracy of 100% on the train set, 60% on the open set, and 55%
on the hidden set. Table 4.22 provides a visual representation of the detailed
classification reports by lithology class. Comparing this to the base model, there is
an increase of 4% and 3% on the train and open set respectively, while there is no

improvement in the hidden set.
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Table 4.22 KNN Classification reports for the training, open, and hidden datasets

with hyperparameters and feature engineering.

Training set Open set Hidden set

Lithology Precision Recall F1-scorePrecision Recall F1-scorePrecision Recall F1-score
Sandstone (0) 1 1 1 0.92 0.66 0.77 0.3 0.65 0.41
Sandstone/Shale (1) 1 1 1 _ _ _ _ _ _
Shale (2) 1 1 1 0 0 0 0.39 0.41 0.4
Marl (3) 1 1 1 0.6 0.42 0.49 0.67 0.35 0.46
Dolomite (4) 1 1 1 0.01 0 0.01 0 0 0
Limestone (5) 1 1 1 _ _ _ 0.97 0.3 0.46
Chalk (6) 1 1 1 0.19 0.45 0.27 0.32 0.55 0.41
Halite (7) 1 1 1 0.27 0.14 0.19 0.41 0.31 0.35
Anhydrite (8) 1 1 1 0.55 0.56 0.56 0.59 0.49 0.54
Tuff (9) 1 1 1 0.22 0.23 0.22 0.26 0.43 0.32
Coal (10) 1 1 1 0.78 0.74 0.76 0.74 0.62 0.68
Basement (11) 1 1 1 0.25 0.15 0.19 0.1 0.48 0.16
Penalty matrix score 0 -1.35 -1.56

accuracy 1 0.6 0.55

RMSE 0 1.388 1.965

Weighted avg 1 1 1 0.62 0.6 0.61 0.63 0.55 0.57
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CHAPTER FIVE

DISCUSSION

In this study, | investigated how accurately machine learning model like RF, SVM,
Logistic regression, decision tree, KNN, XGB, Light GBM, GB, and CatBoost can be
able to classify lithology label in well logs. To achieve this, the models were trained
with or without hyperparameters, with or without feature engineering, and with or
without augmented data to investigate which model performed best. For the
100,000-sample data, Random forest performed best, which is consistent with
Merembayev et al. 2021. Random Forest, CatBoost, XGB and KNN performed best
without any form of feature engineering, outlier filter and ML imputation, Logistic
regression, decision tree and support vector machine performed best when the
dataset has ML imputation (scenario 2), KNN and LGBM performed best with feature

engineering. None of the model performed better when augmented data was used

For deeper study, 3 top models (RF, XGB, KNN) in the first investigation were used
to train the entire train dataset and evaluated on the open and hidden set. A

comparison of the model performance for different scenario is shown in table 6.1.

Table 6.1. Comparison of the train, open and hidden accuracy of Random forest,

Extreme gradient boosting, and K nearest neighbour.

Random Forest Extreme Gradient Boosting K-Nearest Neighbour
Trainset  Open set Hidden set  Trainset Open set Hidden set Train set Open set Hidden set
Base model 100 78 80 82 76 78 96 57 55
Model with hyperparameters 98 79 80 86 80 81 100 61 56
Model with data augmentation 100 78 80 93 76 79 95 57 59
Model with data augmentation and hyperparameters 99 79 80 89 79 80 _ _ _
Model with feature engineering 98 77 80 88 80 80 100 60 55

For random forest trained on the entire train dataset, and evaluated on the open
dataset, it was observed that on the open set RF performed best at classifying
sandstone/shale lithology, and it was able to differentiate between sandstone/shale
and sandstone but misclassified the shale lithology. With feature engineering, the
model was not able to classify sandstone, shale/sandstone, and shale but coal was
correctly classified with feature engineering. There was improvement with the
classification of chalk from 7% to 48%, coal from 0% to 99% and anhydrite from 0% to
70%. On the hidden dataset, RF performed best at classifying anhydrite,

sandstone/shale, and halite. With feature engineering, sandstone accurate
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classification improved from 77% to 82%, while sandstone/shale could not be
classified correctly. The classification of coal also increased from 0% to 95%, and
limestone from 0% to 99%. There is little or no improvement with the classification
of all the lithology when Augmented data was used with or without

hyperparameters.

Overall, RF model was unable to generalize its performance on unseen objects, and
it performed quite well with classifying lithology facies that are not similar to each

other.

For XGB trained on the entire train dataset and evaluated on the open dataset, it
was observed that XGB performed well at classifying sandstone/shale lithology, and
it was able to differentiate between sandstone/shale and sandstone but
misclassified the shale lithology more. In the open set, XGB model was not able to
make any accurate classification for dolomite, limestone, anhydrite, and coal,
whether with hyperparameters, feature engineering, data augmentation or not.
While on the hidden set, anhydrite was accurately classified (96%), as well as
sandstone/shale (97%). When trained with hyperparameters, the overall accuracy of
open and hidden set increased by 4% and 3% respectively. With data augmentation,
marl lithology accuracy increased from 22% to 60%, and with feature engineering it

increased to 68% (figure 6.1). XGB also classifies basement better than RF.

Feature engineering was able to improve the classification of the lithology with
fewer observation like marl, basement, anhydrite, and coal compared to lithologies
like shale, sandstone/shale and sandstone that contributes to more than 70% of the
dataset. XGB model trained with hyperparameter performed better for most of the
lithology like sandstone, shale, sandstone/shale, marl, tuff, chalk except basement
and halite. The XGB model could not classify dolomite and limestone in all the
different scenario, dolomite was misclassified as marl while limestone was
misclassified as sandstone/shale (figure 6.2). In the hidden set, the base model
classified sandstone/shale (97%), and anhydrite (99%) correctly, while other

lithology was averagely classified.

Overall, the model performance was better in hidden set compared to the open set
and this may be because the distribution of the features is more balanced in the
hidden set.
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confusion matrix for XGB model with augmentation
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Figure 6.1. Normalised confusion matrix of XGB model with augmented data.
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confusion matrix for XGB model with augmentation and tuning
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Figure 6.2. Normalised confusion matrix of XGB model with augmented data and

hyperparameter.

Though, KNN model achieved an accuracy of 88% in the 100,000 sample base model,
its overall performance in the open and hidden set was low. In the open set, KNN
base model could not classify dolomite, limestone, halite, anhydrite and coal, with
hyperparameters halite and limestone were moderately and poorly classified
respectively while dolomite, anhydrite and coal were misclassified. In the hidden

set, dolomite, halite, and anhydrite were moderately classified

Base model and model with augmented data with or without hyperparameter
misclassified coal, but with feature engineering coal was classified with an accuracy

of 74% and 62% in open and hidden set respectively.

Shale lithology is generally misclassified in all the model, but feature engineering
improves the performance of the classification from 27% to 41% in the hidden data

set. There was little improvement in the overall classification of most lithology with
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the model trained with augmented data with or without tuning, and dolomite and

halite were misclassified (Figure 6.3).

confusion matrix for KNN model with augmentation
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Figure 6.3. Normalised confusion matrix of KNN model with augmented data.

Comparing the actual label and predicted label for the three model as shown in
figure 6.4 below, none of the model can accurately classify the thin beds of shales
and chalk. KNN performed worst as it misclassifies most of the thin layers of

lithology.
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Figure 6.4. Prediction analysis of well 15/9-23 comparing the actual label to the
predicted label in RF, XGB and KNN.
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CHAPTER SIX

CONCLUSION

Within the scope of this study, | investigated the capability of nine different machine
learning algorithms to classify rock facies. The various machine learning algorithms
that | have tried includes Random Forest (RF), Decision tree, Support Vector Machine
(SVM), Gradient boosting, Categorical boosting (CatBoost), Light gradient boosting
(LGBM), Extreme gradient boosting (XGB), K-Nearest Neighbour (KNN), and logistic
regression, both with and without feature engineering, outlier removal, and ML
imputation. According to the findings, the Random Forest model produces the best
results out of all the algorithms that were taken into consideration, with an accuracy
of 91%. The XGB model and the CatBoost model came in second and third, with an
accuracy of 89.6% and 89.1% respectively. When the entire model was trained and
tested on the open and hidden set, XGB model trained with hyperparameters
performed best with accuracy of 86%,80% and 81% on the train, open and hidden
dataset respectively. With RF model trained with hyperparameters, the accuracy is
of 98%,79% and 80% on the train, open and hidden dataset respectively. Therefore
XGB is a better model for this data because produce good accuracy on the both
training and test data, while in RF the model could not generalise on the test data

because of overfitting.

The thesis's main contribution can be broken down into three sections. The first
major takeaway from the research is that machine learning can accurately predict
rock facies in the FORCE data set, with an average accuracy of 81%. Second, Models
trained with hyperparameters performed better, as well as model trained with
augmented data. To conclude, feature engineering on the test data was most
effective with KNN and LGBM, feature engineering also improved the classification
of some lithology, especially lithologies like coal, limestone and marl with few
observations point in the data. It was also observed that the removal of outliers did

not improve the model’s performance.
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Considering these encouraging outcomes, future work will focus on analysing deep
learning approaches to feature learning and classification (e.g., convolutional neural

networks).

Recommendation

First and foremost, there is need to address the problem of unbalanced dataset. This
can be accomplished by weighting samples in accordance with the frequency of the
classes. If we give fewer common classes a higher weight, the model may be able to
classify them more accurately. In addition, we could try the upsampling or
downsampling method to train our model on a dataset that is more evenly
distributed.

Then the tuning of the hyperparameters should be improved. Either by performing
additional iterations of our existing grid search or by utilising bayesian search, which

typically yields superior results.

Alternate types of models are another option that can enhance the quality of our
findings. For instance, LSTM architecture can be used to simultaneously classify all
the samples that come from the same well. In this way, our model will classify a
sample based on information obtained from its surroundings. Additionally, this kind
of model might be able to capture the structure of the lithofacies that are found

underground.
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APPENDIXES

Appendix A: Data loading and exploration

In: [1]s

# importing required Libraries
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.cluster import KMeans
from tqdm import tqdm

import time

In [2]:

train = pd.read_csv("CSV_train.csv",low_memory=False,delimiter=";")
test=pd.read_csv("CSV_test.csv",low_memory=False,delimiter=",")
hidden=pd.read_csv("CSV_hidden_test.csv",low_memory=False,delimiter=",")

In: [3]z
hidden
Out[3]:
WELL DEPTH_MD X_LOC  Y_LOC z_Loc GROUP FORMATION
o % 15182800 433906.7500 64600005 -1493.241821 ORCALAND  siade Fm,
1 190 15184320 4339067500 64600005 -1493:393799 HORPALAND  syade Fm.
2 D 15185840 4330067500 6460000.5 -1493.545776 HORDALA(';‘S Skade Fm.
3 D 15187360 4330067500 64600005 -1493.697754 HORPALAND  skade Fm.
a "D 15188880 4330067500 64600005 -1493.849600 "ONCAAND siade Fm.
12202 %% 20732088 536006.0625 67930220 2043444580  BAATGP.  Etive Fm.
122303 %% 20734508 536096.0625 67930220 -2043505047  BAATGP.  Etive Fm.
122304 °%% 20736028 5360060625 67930220 2043747559 ~ BAATGP.  Etive Fm.
122395 %% 20737548 536006.0625 67930220 -2043899170  BAATGP. Etive Fm.
122306 °°% 20739068 5360060625 67930220 -2044.050537  BAATGP.  Etive Fm.

122397 rows x 29 columns
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In [4]:

Alldata=pd.concat([train, test], axis=0).reset_index()
Alldata.loc[train.index, 'Dataset’'] = 'Train'
Alldata.loc[train.index.max()+1:, 'Dataset'] = 'Test'

Tn. [5]%
Alldata
out[5]:
index WELL DEPTH_MD X_LOC  Y_LOC z_Loc GROUP FOR!
0 o % 4045280 43764196875 64700725 -469.501831 "OROLAND
1 1 1% 4046800 43764196875 64700725 469653809 "o C-LD
2 2 "% 4948320 43764196875 64700725 469.805786 \ORD-AND
3 3 1% 4949840 43764196875 64700725 -469.957794 "NOROLAND
4 4 "% 4951360 43764196875 64709725 470109772 NORPLAND
1307202 136781 7% 32243806 53622593750 67948805 -3199.876465  BAAT GP B
1307293 136782 7% 32245416 53622593750 6794880.5 -3200.028320  BAAT GP. R
1307204 136783 % 32246036 53622593750 6794880.5 -3200.180176  BAAT GP. B
1307295 136784 7% 32248456 53622593750 67948805 -3200.332031  BAAT GP. B
1307296 136785 7% 32249976 53622593750 67948805 -3200.483837  BAAT GP. F

1307297 rows x 31 columns

In [6]:

train_wells = Alldata['WELL'][Alldata.Dataset=="Train'].unique()
print('No of train wells: %s' % len(train_wells))

No of train wells: 98
In [7]:

test_wells = Alldata[ 'WELL'][Alldata.Dataset=="Test'].unique()
print('No of test wells: %s' % len(test_wells))

No of test wells: 10
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In [8]:

train.info()

<class 'pandas.core.frame.DataFrame'>

new project - Jupyter Notebook

RangeIndex: 1170511 entries, © to 1170510

Data columns (total 29 columns):

#

WCoONOTUEAWNEREO
|

R
= ®

NNNNNNNNRRRPRRRRR
NOUBWNROUOUONOGOUDWRN

28

Column
WELL
DEPTH_MD
X_LOC
Y_LoC
Z_LocC
GROUP
FORMATION
CALI
RSHA
RMED
RDEP
RHOB

GR

SGR

NPHI

PEF

DTC

SP

BS

ROP

DTS

DCAL
DRHO
MUDWEIGHT
RMIC
ROPA

RXO

FORCE_2020_LITHOFACIES_LITHOLOGY
FORCE_2020_LITHOFACIES_CONFIDENCE
dtypes: float64(25), int64(1), object(3)

memory usage:
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259.0+ MB

Non-Nul
1170511
1170511
1159736
1159736
1159736
1169233
1033517
1082634
630650
1131518
1159496
1009242
1170511
69353 n
765409
671692
1089648
864247
682657
535071
174613
298833
987857
316151
176160
192325
327427
1170511
1170332
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1 Count
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

non-null
non-null
non-null
non-null
non-null

on-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

object
float64
floate4
float64
floate4
object
object
float64
floate4
floate4
floate4
float64
floate4
floate4
floate4
floate4
floate4
float64
floate4
floate4
floate4
floate4
float64
floate4
floate4
floate4
float64
int64
floate4

3/64



07/09/2022, 01:25

In [10]:

#percentage missing values
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empty_data = train[train.isna().any(axis=1)]
per_missing = train.isnull().sum()/len(train)*100

print(per_missing)

WELL

DEPTH_MD

X_LOC

Y_LOC

Z_Loc

GROUP
FORMATION

CALI

RSHA

RMED

RDEP

RHOB

GR

SGR

NPHI

PEF

DTC

SP

BS

ROP

DTS

DCAL

DRHO

MUDWEIGHT

RMIC

ROPA

RXO
FORCE_2020_LITHOFACIES_LITHOLOGY
FORCE_2020_LITHOFACIES_CONFIDENCE
dtype: floaté64

=
NP OOOOOO®

i
w o

.000000
.000000
.920538
.920538
.920538
.109183
.703777
.507576
.121822
.331280
.941042
.777658
.000000
.074981
.608987
.615490
.908350
.164983
.678720
.287401
.082327
.469868
.604638
.990344
.950163
.569142
.027004
.000000
.015292
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In [11]:

# statistics of the data
train.describe()

out[11]:

DEPTH_MD X_LOC Y_LOC Z_LoC CALI RSk

count 1.170511e+06 1.159736e+06 1.159736e+06 1.159736e+06 1.082634e+06 630650.0000
mean 2.184087e+03 4.856310e+05 6.681276e+06 -2.138527e+03 1.318568e+01 10.6946

std 9.971821e+02 3.455641e+04 1.281524e+05 9.709426e+02 3.798907e+00 100.6425

min 1.360860e+02 4.268988e+05 6.406641e+06 -5.395563e+03 2.344000e+00 0.0001
25% 1.418597e+03 4.547996e+05 6.591327e+06 -2.811502e+03 9.429712e+00 0.8541
50% 2.076605e+03 4.769203e+05 6.737311e+06 -2.042785e+03 1.255575e+01 1.3990
75% 2.864393e+03 5.201532e+05 6.784886e+06 -1.391866e+03 1.671075e+01 3.0993

max 5.436632e+03 5.726328e+05 6.856661e+06 -1.110860e+02 2.827900e+01 2193.9045

8 rows x 26 columns

In [12]:
def understand_dist(dataset,feature_type):
if feature_type == "Categorical":

categorical_features=[feature for feature in dataset.columns if dataset[feature].dt

dataframes=[]

for feature in categorical_features:
dataframe=dataset[feature].value_counts().rename_axis(feature).reset_index(name
dataframes.append(dataframe)

plt.figure(figsize=(10,4))
sns.countplot(x=feature,data = dataset)
plt.show()

print(dataframe, '\n")

elif feature_type == "Numeric":
numerical_features=[feature for feature in dataset.columns if dataset[feature].dtyp
for feature in numerical_features:
plt.figure(figsize=(10,4))
sns.distplot(dataset[feature])

plt.show()
print("Description :\n\n"+str(dataset[feature].describe())+"\n\n")
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I [23] 2

import seaborn as sns
understand_dist(train, "Categorical")

25000

20000

15000

count

10000

5000

WELL counts

0 25/2-7 25131
1 29/6-1 24464
2 25/7-2 23879
3 35/11-6 23544
4 34/2-4 23403
93 25/11-15 2284
94 34/5-1'S 2273
95 34/3-1 A 2251
9% 7/1-2°S 2040
97 16/1-2 1734

[98 rows x 2 columns]

300000 A

250000

200000 A

150000 -

count

100000 4

50000 1

0 B
NORD LANR AL RO G AR BBESERIDIER. KNI BE/ESTLABDOGE TE|MEFRETGEG ENDES NEBGRNF| ORDUBRIN EAAT GP.
GROUP

GROUP counts =
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(%} HORDALAND GP. 293155
1 SHETLAND GP. 234028
2 VIKING GP. 131999
3 ROGALAND GP. 131944
4 DUNLIN GP. 119085
5 NORDLAND GP. 111490
6 CROMER KNOLL GP. 52320
7 BAAT GP. 35823
8 VESTLAND GP. 26116
2 HEGRE GP. 13913
10 ZECHSTEIN GP. 12238
11 BOKNFJORD GP. 3125
12 ROTLIEGENDES GP. 2792
13 TYNE GP. 1205
175000
150000
125000
+ 100000 A
=
8
75000
50000
25000
0
B ki
FORMATION counts
0 Utsira Fm. 172636
1 Kyrre Fm. 94328
2 Lista Fm. 71080
3 Heather Fm. 65041
4 Skade Fm. 45983
64 Broom Fm. 235
65 Intra Balder Fm. Sst. 177
66 Farsund Fm. 171
67 Flekkefjord Fm. 118
68 Egersund Fm. 105

[69 rows x 2 col

umns ]
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In [14]:
understand_dist(train, “Numeric")

C:\Users\Ayori\anaconda3\lib\site-packages\seaborn\distributions.py:2619:
FutureWarning: “distplot’™ is a deprecated function and will be removed in
a future version. Please adapt your code to use either “displot™ (a figure
-level function with similar flexibility) or “histplot™ (an axes-level fun
ction for histograms).

warnings.warn(msg, FutureWarning)

0.00040
0.00035
0.00030

0.00025 A

ity

0.00020

Dens

0.00015

0.00010 1

0.00005

0.00000 T T T
n nnn nan annn annn snnn

In [15]:

wells = train['WELL'].unique()
len(wells)

Out[15]:

98

missing values

The data is presented as is and includes a large amount of missing values. Missing data within well logging can
arise for a number of reasons including:

Tool failures & problems Missing by choice (i.e. tools not run due to budgetary constraints) Human error Vintage
datasets Issues arising from the borehole environment
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In [16]:

import missingno as msno
msno.matrix(train);

® &
§§§F§§&§¢§iﬁ

FELEs 8 & ¢
{ |

1170511

Iny [27 ]

msno.bar(train);
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In [19]:

measures_list = train.columns.values[7:-2]
nan = train[measures_list].isna().mean().sort_values()

nan

Out[19]:

GR 0.000000
RDEP 0.009410
RMED 0.033313
DTC 0.069084
CALI 0.075076
RHOB 0.137777
DRHO 0.156046
SP 0.261650
NPHI 0.346090
BS 0.416787
PEF 0.426155
RSHA 0.461218
ROP 0.542874
RXO 0.720270
MUDWEIGHT 0.729903
DCAL 0.744699
ROPA 0.835691
RMIC 0.849502
DTS 0.850823
SGR 0.940750

dtype: float64

In [20]:

plt.figure(figsize=(20,5))

splot = sns.barplot(x=nan.index,y=nan)

splot.set_title("percentage of null values per measurement (all wells data)")
plt.show()

percentage of null values per measurement (all wells data)

& RDEP  RMED  DITC CAU  RHOB  DRHO E2
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In [21]:
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nan_values_per_well = train.isna()[measures_list]

nan_values_per_well["WELL"] = train.WELL

nan_values_per_well= nan_values_per_well.groupby("WELL").mean()
##order wells per missing values count overall

missing_data_threshold = 0.6
wells_missing_data = nan_values_per_well.mean(axis=1).sort_values()

wells _missing_data.plot(kind="bar",figsize=(30,5))

plt.axhline(y=missing_data_threshold, color='green', linestyle='--',label="missing percenta
plt.axhline(y=wells_missing_data.mean(), color='blue', linestyle='-',6label="mean of missing
plt.title("percentage of missing data per well")

plt.legend()

plt.show()

percertage of missing data per weil

In [22]:

wells_missing_data[wells_missing_data>@.5]

out[22]:

WELL
34/7-20
31/3-3
34/7-21
31/4-5
31/2-7
25/9-1
34/10-35
31/6-8
31/3-2
34/10-33
36/7-3
30/3-5 S
31/3-1
34/2-4
16/11-1 ST3
29/6-1
31/6-5
33/9-1
35/11-12
31/5-4 S
dtype: floaté4

D000

.517994
.518303
.519305
.521012
.525094
.530642
.535666
.543978
.547474
.554904
.559496
.560942
.571309
.573657
.594725
.599107
.600725
.622905
.668109
.817138
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In [23]:
feature_missing_data_threshold = 0.70

wells_missing_data2 = (nan_values_per_well>feature_missing_data_threshold).sum(axis=1).sort
wells_missing_data2.plot(kind="bar",figsize=(30,5))

plt.axhline(y=nan_values_per_well.shape[1]//2, color='green', linestyle='--',label="half nu
plt.axhline(y=wells_missing_data2.mean(), color='blue’, linestyle='-',label="average value
plt.title("number of measurements with more than {}% of missing data per well".format(featu

plt.legend()
plt.show()

umber of measuremants wéh more than 70 0% of messing data per well

-

ns

In [24]:

wells_missing_data2[wells_missing_data2>=10]

out[24]:

WELL

33/9-1 10
31/6-5 10
31/6-8 10
34/7-20 10
31/4-10 10
31/3-2 10
34/2-4 10
31/2-9 10
34/10-33 10
25/4-5 10
31/3-1 10
30/3-5 S 11
16/11-1 ST3 11
34/10-35 11
36/7-3 11
31/2-7 11
29/6-1 12
35/11-12 14
31/5-4 S 18

dtype: inte4

Observations GR has no missing value ROPA,RMIC,DTS,SGR have more than 80% of missing values (remove
them from data?keep them?) According to the boxplots, There are some features we could put aside because
they have a very high level of null values percentage for almost all wells (more than 75% of wells): SGR, DTS,
DCAL,RMIC, RXO. MUDWEIGHT also have more than 40% empty values for 75% of wells. outliers (wells)

there are 4 wells with more than 60% of missing data (31/6-5 ,33/9-1,35/11-12,31/5-4 S).

Well 31/5-4 S has 81% of missing data. We can put them aside during modelling.
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Depending on the results we can also try to remove other wells with more than 50% of missing values (average
missing values percentage is 41%).

There are 4 wells with 10+/20 features which have more than 90% of missing values : (well,number) 34/10-33
10, 34/7-20 10, 30/3-5 S 11, 36/7-3 11 There are 16 wells with 10+/20 features which have more than 75% of
missing values : (well,number) 31/6-8 10 31/2-9 10 34/2-4 10 31/3-2 10 31/6-5 10 34/10-33 10 33/9-1 10 34/7-
20 10 36/7-3 11 16/11-1 ST3 11 30/3-5 S 11 34/10-35 11 31/2-7 11 29/6-1 12 35/11-12 14 31/5-4 S 18 We can
remove those wells or impute missing values during modelisation

L [25]

corr = train.corr()
round(corr,2)
sns.heatmap(corr);
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In [26]:

import matplotlib.pyplot as plt
plt.figure(figsize=(38, 28))

new project - Jupyter Notebook

sns.heatmap(train.sample(200).corr(), cmap='YlGnBu', annot=True)

plt.title('Lithology Correlation Matrix');

07/09/2022, 01:25

In [27]3

import plotly.express as px
px.bar(train.sample(1000),
title="Lithology vs. Confidence',
x="FORMATION',
y="FORCE_2020_LITHOFACIES_LITHOLOGY',
log_y=True,

Log_x=True,
color="RSHA")

Lithology vs. Confidence
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In [29]:

fig = px.histogram(train.sample(1000),
x="GR',
marginal="box"',
nbins=47,

title="'Distribution of GR')
fig.update_layout(bargap=0.1)
fig.show()
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In [30]:
fig = px.histogram(train.sample(1000),
x="RHOB',
marginal="box",
nbins=47,

title="Distribution of RHOB')
fig.update_layout(bargap=0.1)
fig.show()

Distribution of RHOB
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In' [31]:

fig = px.histogram(train.sample(1000),
x='DTC',
marginal="box",
nbins=47,

title="'Distribution of DTC")
fig.update_layout(bargap=0.1)
fig.show()

Distribution of DTC
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In [32]:
fig = px.histogram(train.sample(1000),
x='ROP',
marginal="box"',
nbins=47,

title='Distribution of ROP")
fig.update_layout(bargap=0.1)
fig.show()
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In' [33] =

fig = px.histogram(train.sample(10090),
x="NPHI',
marginal="box"',
nbins=47,
title="Distribution of Neutron porosity’,

)
fig.update_layout(bargap=0.1)
fig.show()

Distribution of Neutron porosity
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T [37] 2

new project - Jupyter Notebook

plot_dn = sns.FacetGrid(train, col='Lithology', col_wrap=4, hue='Lithology")

plot_dn.map(sns.scatterplot, 'NPHI',

plot_dn.set(xlim=(-0.15, 1))
plot_dn.set(ylim=(3, 1))

plot_dn.add_legend();

Lithology = Shale
4

Lithology = Sandstone
.,

'RHOB', alpha=0.8)

Lithology = Sandstone/Shale

Lithology = Limestone

Lithology = Anhydrite

Lithology = Chalk

150 £
175

o i

“ 225 i ¢
250 ,[.'? A
275 '

Lithology = Basement

53

00 02 04 06 08 10
NPHI

Density -Neutron Distribution by Lithology and Well

We can further enhance the density neutron data by looking at the lithology distribution across multiple wells.

00 02 04 06 08
NPHI

00 02 04 06 08 10
NPHI

00 02 04 06 08 10
NPHI

Lithology
Shale

Sandstone
Sandstone/Shale
Limestone

wft

Marl

Anhydrite
Dolomite

halk

Coal

« Halite
« Basement

Using the converted LITH data column we can create shading for different lithology types by supplying LITH to

the hue parameter. We can then supply the WELL column from the dataframe into the col parameter.
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In [38]:

plot_dn
plot_dn
plot_dn

= sns.FacetGrid(train, col="WELL', col_wrap=4, hue='Lithology")
'RHOB', alpha=0.8,linewidth=1, size=6.1, marker='+")

.map(sns.scatterplot, 'NPHI',
.set(xlim=(-0.15, 1))

new project - Jupyter Notebook

plot_dn.set(ylim=(3, 1))
plot_dn.add_legend();
S WELL = 15/3-13 WELL = 15/9-15 WELL = 15/9-17 WELL = 16/1-2
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175
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€ 200 ?
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250 2 &
275 b 3
300
i WELL = 16/1-6 A WELL = 16/10-1 WELL = 16/10-2 WELL = 16/10-3
125
150 e
175 L3 ¥
8 200 o
S ;
250 > g
275 o
300
oo WELL = 16/105 WELL = 16/1115T3 WELL = 167211 A WELL = 161216
125
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175 g oy,
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Density -Neutron Distribution by Lithology and

Geological Group
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In [39]:

plot_dn = sns.FacetGrid(train, col="GROUP', col_wrap=4, hue='Lithology")
plot_dn.map(sns.scatterplot, 'NPHI', 'RHOB', alpha=0.8,linewidth=1, size=0.1, marker='+")
plot_dn.set(xlim=(-0.15, 1))

plot_dn.set(ylim=(3, 1))

plot_dn.add_legend();
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In [40]:

# Display train well data
well = train[train.WELL=="15/9-13"]

# define what lLogs are we going to us
logs = ['NPHI', 'RHOB', 'GR', 'RDEP', 'SP', 'CALI', 'DTC']

# create the subplots; ncols equals the number of logs
fig, ax = plt.subplots(nrows=1, ncols=len(logs), figsize=(15,7))

# Color Llist
colors = ['black', 'red', 'blue', 'green', 'purple', 'black', 'orange']

for i in range(len(logs)):
if i ==
# for resistivity, semilog plot
ax[i].semilogx(well[logs[i]], well[ 'DEPTH_MD'], color=colors[i])
else:
# for non-resistivity, normal plot
ax[i].plot(well[logs[i]], well[ 'DEPTH_MD'], color=colors[i])

ax[i].set_title(logs[i], size=15)
ax[i].invert_yaxis()
ax[i].grid(True)

ax[2].set_xlim(@, 300)
plt.tight_layout(1.1)
plt.show()

C:\Users\Ayori\AppData\Local\Temp/ipykernel_16448/2563653784.py:26: Matplotl
ibDeprecationWarning:

Passing the pad parameter of tight_layout() positionally is deprecated since
Matplotlib 3.3; the parameter will become keyword-only two minor releases la
ter.

NPHI RHOB GR RDEP SP CALI DTC

500 500 500 00 500 500
3500 1000 1000 1000 1000 1000 1000
1500 1500 1500 1500 1500 1500

2000
2000 2000 2000 2000 2000 2000

2500
200 200 2500 2500 2500 200

3000
3000 2000 3000 3000 3000 3000

00 05 2 100 200 300 w10 0 100 150 10 2 0 100 150

Identifying Bad Hole Data
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To visualise where we have badhole data caused by borehole enlargement. Deterioration of the borehole wall

new project - Jupyter Notebook

can happen for a number of different reasons including undercompacted rocks and variations in stresses acting

on those rocks such as the mud weight.

In [41]:

train_BS = train.dropna(subset=['BS', 'CALI']).copy()
train_BS.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 657745 entries, 18350 to 1170510

Data columns (total 3@ columns):

#

WoOoONOTUVBAWNEREOI
1

=
= ®

NNNNNNNNNRPRRRERRRR
ONOUBWNROUOUONGOUVDWN

29

dtypes: float64(25), int64(1l), object(4)

Column
WELL
DEPTH_MD
X_LOC
Y_LoC
Z_LoC
GROUP
FORMATION
CALI
RSHA
RMED
RDEP
RHOB

GR

SGR

NPHI

PEF

DTC

SP

BS

ROP

DTS

DCAL
DRHO
MUDWEIGHT
RMIC
ROPA

RXO

FORCE_2020_LITHOFACIES_LITHOLOGY
FORCE_2020_LITHOFACIES_CONFIDENCE

Lithology

memory usage:

In [42]:

train_BS['BS'].isna().sum()

out[42]:

]
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Non-Null Count

657745
657745
649822
649822
649822
657745
600992
657745
375101
641156
649659
583803
657745

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

19899 non-null

475420
412870
614148
429251
657745
404358
158498
298696
571527
214471
153746
140222
161936
657745
657629
657745
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non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

object
floate4
float64
floate4
floate4
object
object
floate4
floate4
float64
floate4
floate4
floate4
floate4
floate4
floate4
floate4
floate4
floate4
floate4
floate4
float64
floate4
floate4
floate4
floate4
float64
inte4
floate4
object
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In [43]:
train_BS['CALI'].isna().sum()
Out[43]:

2]

In [44]:

numer_of BS_wells = train_BS['WELL'].nunique()
print(f"We have {numer_of_BS_wells} wells that have bit size log")

We have 68 wells that have bit size log

In [45]:

wells BS = train_BS['WELL'].unique()
wells_BS

Out[45]:

array(['15/9-15', '16/1-2', '16/1-6 A', 'l1l6/1e-1', 'l16/10-2', '16/10-3',
'i16/10-5"', '16/11-1 ST3', '16/2-11 A', '16/2-16', '16/2-6',
‘16/4-1', '16/5-3', '16/7-4', '25/11-15', '25/11-5', '25/2-13 T4',
'25/2-14', '25/2-7', '25/3-1', '25/4-5', '25/5-4', '25/6-1',
‘25/6-2', '25/6-3', '25/7-2', '25/8-5 S', '25/8-7', '25/9-1',
‘26/4-1', '31/2-1', '31/2-19 s', '31/3-1', '31/3-2"', '31/3-3',
‘31/3-4', '31/6-5', '31/6-8', '32/2-1', '33/5-2', '33/6-3 S',
'33/9-1', '33/9-17', '34/1e-33', '34/11-1', '34/12-1"', '34/3-1 A',
‘34/4-10 R', '34/5-1 A', '34/5-1S', '34/7-13', '34/8-1',

'34/8-7 R', '35/11-1@', '35/11-11', '35/11-12', '35/11-13',

'35/11-15 S', '35/11-7', '35/12-1', '35/3-7 S', '35/4-1',

‘35/8-6 S', '35/9-10 S', '35/9-2', '35/9-5', '7/1-1', '7/1-2 S'],
dtype=object)

We need to calculate the difference between the bit size and the calliper logs to analyse the well conditions. If
the result is a negative value, this indicates that the borehole has shrunken in size resulting from shale swelling.
On the other hand, a positive value indicates that the borehole has increased in size due to caving resulting
from a fragile formation.
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In [46]:

train['CALI_BS'] = train['CALI'] - train['BS']
well group = train.groupby('WELL")
fig, axs = plt.subplots(5, 3, figsize=(20,20))
for (name, df), ax in zip(well_group, axs.flat):
df.plot(kind="scatter', x="NPHI', y='RHOB', ax=ax, c='CALI_BS', cmap='jet', vmin=-1, vm
ax.set_x1im(-0.15,1)
ax.set_ylim(3,1)
ax.set_title(name)
plt.tight_layout()
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well 15/9-15 and 16/1-2 and 16/4-1 have badhole data

In [47]:

well_group_lith = train.groupby('Lithology")
fig, axs = plt.subplots(4, 3, figsize=(20,20))
for (name, df), ax in zip(well_group_lith, axs.flat):

new project - Jupyter Notebook

df.plot(kind="scatter', x="NPHI', y='RHOB', ax=ax, c='CALI_BS', cmap='jet', vmin=-1, vm

ax.set_x1im(-0.15,1)

ax.set_ylim(3,1)

ax.set_title(name)
plt.tight_layout()
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In [59]:

# storing length of datasets

train_len = train.shape[0]

test_len = test.shape[@]

All data = pd.concat((train,test,hidden)).reset_index(drop=True)

#dropping columns with high missing values

drop_cols = ['SGR', 'ROPA', 'RXO', 'MUDWEIGHT','DCAL','RMIC','FORCE_2020_LITHOFACIES_CONFID
All_data_drop = All_data.drop(drop_cols, axis=1)

# encoding categorical variables

All_data_drop[ 'GROUP_encoded'] = All_data_drop[ 'GROUP'].astype('category")

All_data_drop[ 'GROUP_encoded'] = All_data_drop[ 'GROUP_encoded'].cat.codes

All_data_drop['FORMATION_encoded'] = All_data_drop[ 'FORMATION'].astype('category')
All_data_drop['FORMATION_encoded'] = All_data_drop[ 'FORMATION_ encoded'].cat.codes

n

All_data_drop['WELL_encoded'] = All_data_drop[ 'WELL'].astype('category")
All_data_drop[ 'WELL_encoded'] = All_data_drop['WELL_encoded'].cat.codes

All_data_drop['Lithology_encoded'] = All_data_drop['FORCE_2020_ LITHOFACIES_LITHOLOGY'].asty
All_data_drop['Lithology_encoded'] = All_data_drop['Lithology encoded'].cat.codes

In [60]:

#dropping categorial features replaces beforehan by encoded features
drop2 = All_data_drop.drop([ 'GROUP', 'FORMATION', 'WELL','FORCE_2020_ LITHOFACIES_LITHOLOGY"',

# splitting dataset into training, test, and hidden sets
train_prep = drop2[:train_len].copy()

test_prep = drop2[train_len:(train_len+test_len)].copy()
hidden_prep = drop2[(train_len+test_len):].copy()

In [61]:
train_prepl= train_prep.copy()

test_prepl= test_prep.copy()
hidden_prepl= hidden_prep.copy()
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In [63]:

#Inputing missing values by introducing median

from sklearn.impute import SimpleImputer

miss = SimpleImputer(missing_values=np.nan, strategy='median')
miss.fit(train_prep)

train_imp = miss.fit_transform(train_prep)

train_imp=pd.DataFrame(train_imp, columns=['DEPTH_MD', 'X_LOC', 'y_LOoC', 'z_LOC', 'CALI', '
"RHOB', 'GR', 'NPHI', 'PEF', 'DTC', 'SP', 'BS', 'ROP', 'DTS', 'DRHO',
'"GROUP_encoded ',
'FORMATION_encoded', 'WELL_encoded', 'Lithology_encoded'])
train_imp
out[63]: a
DEPTH_MD X_LOC Y_LOC Z_1LOC CALI RSHA RMED RDEP RHC
0 494.5280 437641.96875 6470972.5 -469.501831 19.480835 1.39902 1.611410 1.798681 1.8841
1 4946800 437641.96875 6470972.5 -469.653809 19.468800 1.39902 1.618070 1.795641 1.8897
2 494.8320 437641.96875 6470972.5 -469.805786 19.468800 1.39902 1.626459 1.800733 1.8965
3 4949840 437641.96875 6470972.5 -469.957794 19.459282 1.39902 1.621594 1.801517 1.8919
4 495.1360 437641.96875 6470972.5 -470.109772 19.453100 1.39902 1.602679 1.795299 1.8800
1170506 3169.3124 476920.31250 6737311.0 -2042.784973 8.423170 1.39902 1.443584 1.439000 2.5279
1170507  3169.4644 476920.31250 6737311.0 -2042.784973 8.379244 1.39902 1.443584 1.439000 2.5376
1170508  3169.6164 476920.31250 6737311.0 -2042.784973 8.350248 1.39902 1.443584 1.439000 2.4918 .
P >
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In [66]:

#Predicting DTS
from sklearn.metrics import max_error
from xgboost import XGBRegressor

model1000 = XGBRegressor()

new project - Jupyter Notebook

model1000.fit(X_dts_train, Y_dts_train.values.ravel(), early_stopping_rounds=100, eval_set=

train_pred = modell1000.predict(X_dts_train)
val_pred = modell000.predict(X_dts_val)

print('Train error:', max_error(Y_dts_train, train_pred))
print(‘validation error:', max_error(Y_dts_val, val_pred))

4

C:\Users\Ayori\anaconda3\1lib\site-packages\xgboost\compat.py:36: FutureWarni

ng:

pandas.Int64Index is deprecated and will be removed from pandas in a future

version. Use pandas.Index with the appropriate dtype instead.

C:\Users\Ayori\anaconda3\1lib\site-packages\xgboost\data.py:250: FutureWarnin

g:

pandas.Int64Index is deprecated and will be removed from pandas in a future

version. Use pandas.Index with the appropriate dtype instead.

[0e] validation_©-rmse:151.68997
[99] validation_0-rmse:10.83745
Train error: 166.67475890855468

Validation error: 181.6628417940625

I [67]

#Visual check on the predictions (Validation Set)
plt.figure(figsize=(25, 5))

plt.plot(list(range(100)), Y_dts_val[25000:25100])
plt.plot(list(range(100)), val_pred[25000:25100], color="g")

out[67]:

[<matplotlib.lines.Line2D at Ox1f63ee@d340>]
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In [68]:

# Filling nan values before predicting DTS
X_train_DTS = train_prep.drop(['DTS'], axis=1)
X_train_DTS2 = X_train_DTS.apply(lambda x: x.fillna(x.median()), axis=0)

X_test_DTS = test_prep.drop(['DTS"], axis=1)
X_test_DTS2 = X_test_DTS.apply(lambda x: x.fillna(x.median()), axis=0)

X_hidden_DTS = hidden_prep.drop(['DTS"'], axis=1)
X_hidden_DTS2 = X_hidden_DTS.apply(lambda x: x.fillna(x.median()), axis=0)

#Predicting DTS (COMPLETE DATASETS)

train_prep[ 'DTS_pred'] = modell000.predict(X_train_DTS2)
test_prep[ 'DTS_pred'] = model1000.predict(X_test_DTS2)
hidden_prep[ 'DTS_pred'] = model1000.predict(X_hidden_DTS2)

#Inputing nan values in DTS with DTS_PREDICTED
train_prep[ 'DTS_COMB'] = train_prep['DTS"]
train_prep[ 'DTS_COMB'].fillna(train_prep[ 'DTS_pred'], inplace=True)

test_prep[ 'DTS_COMB'] = test_prep['DTS']
test_prep['DTS_COMB'].fillna(test_prep['DTS_pred'], inplace=True)

hidden_prep[ 'DTS_COMB'] = hidden_prep['DTS"]
hidden_prep[ 'DTS_COMB'].fillna(hidden_prep[ 'DTS_pred'], inplace=True)

In [69]:

X_dts.columns

out[69]:

Index([ 'DEPTH_MD', 'X_LOC', 'Y_LOC', 'Z_LOC', 'CALI', 'RSHA', 'RMED', 'RDE

o 'RHOB', 'GR', 'NPHI', 'PEF', 'DTC', 'SP', 'BS', 'ROP', 'DRHO',
'GROUP_encoded', 'FORMATION_encoded', 'WELL_encoded’,

'Lithology_encoded'],
dtype="object")
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In [70]:

['DEPTH MD"; "X LOC'; 'Y.Loc';, 'Z_Loc'; "CALI'; "RSHA"; "RMED'; "RDEP";
'RHOB', 'GR', 'NPHI', 'PEF', 'DTC', 'SP', 'BS', 'ROP', 'DTS', 'DRHO',
'GROUP_encoded', 'FORMATION_encoded', 'WELL_encoded’,
'Lithology_encoded’]

out[70]:

['DEPTH_MD',

% LOE",
'y_Loc',
YZ_LOC" ;

YCGALT" ;

'RSHA",

'RMED"',

‘RDEP',

'RHOB',

'GR",

'NPHI',

“PEE™,,

"DTE";

'Ssp*,

'BS',

‘ROP',

‘DTS',

'DRHO",
'GROUP_encoded’,
'FORMATION_encoded',
'WELL_encoded"',
'Lithology_encoded’ ]

Feature selection
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T [72]

#univariate feature selection based on variance prior normalization
train_imp.var().sort_values(ascending=False)

Out[71]:

Y_LOC 1.630050e+10
X_Loc 1.183845e+09
ROP 1.086799%e+06
DEPTH_MD 9.943722e+05
Z 10E 9.341349e+05
RDEP 1.286276e+04
RSHA 5.478753e+03
SP 4.333577e+03
RMED 2.889932e+03
GR 1.171795e+03
WELL_encoded 1.029100e+03
DTC 8.382095e+02
DTS 7.878111e+02
FORMATION_encoded 5.732392e+02
PEF 6.985704e+01
DRHO 4.719175e+01
CALI 1.337578e+01
GROUP_encoded 9.834499e+00
BS 6.492793e+00
Lithology_encoded 2.958274e+00
RHOB 5.546984e-02
NPHI 1.113932e-02
dtype: floate4
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In [72]:

import sklearn.feature_selection

x_header=[ 'DEPTH_MD', 'X_LOC', 'Y_LOC', 'Z_LOC', 'CALI', 'RSHA', 'RMED', 'RDEP',
“RHOB* , “GR’, “NPHL*, *PEF"Y, “DIE*, “SP*, *BS’, ‘ROR*, “DIS", "DRHO®,
'GROUP_encoded', 'FORMATION_encoded', 'WELL_encoded']

y_header=['Lithology encoded']

x_train = train_imp[x_header]

y_train = train_imp[y_header]

feature = sklearn.feature_selection.SelectKBest(k=15)
selected_features = feature.fit(x_train, y_train)

data = pd.DataFrame({'Feature':list(x_train.columns), ‘Scores':selected_features.scores_})
data = data.sort_values(by='Scores', ascending=False)
display(data.head(20))

C:\Users\Ayori\anaconda3\1lib\site-packages\sklearn\utils\validation.py:63: D
ataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().

Feature Scores

7 RDEP 58466.905990
9 GR 30989.161981
10 NPHI 26283.435828
12 DTC 21921.793977
5 RSHA 19570.572074
8 RHOB  9618.469484
2 Y_LOC  7723.230331
18 GROUP_encoded  6271.927504
20 WELL_encoded  6172.054183

19 FORMATION_encoded  3690.058986

0 DEPTH_MD  3029.220186
3 Z LOC 2970.368774
16 DTS 2614.047492
4 CALI  2318.560951
14 BS  1463.302955
1 X_LOC 1072.678467
6 RMED 399.446953
1" PEF 342.075575
13 SP 334.400425
15 ROP 44.671834
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In [73]:

#Visualizing Accuracies
f, ax = plt.subplots(figsize=(10,5))
X_pos = np.arange(len(x_train.columns))

#Create Bars

ax.bar(x_pos, np.array(selected_features.scores_), color=(0.5, 0.7, 0.9, 0.9))
ax.set_ylabel('Scores', size=14)
ax.set_title('LOGISTIC REGRESSION FEATURE IMPORTANCE', size=20)

plt.xticks(x_pos, x_train.columns, rotation=90)
plt.grid(True)

plt.show()
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In [74]:

#Ranking Features based on the K-Best Method
from sklearn.feature_selection import SelectKBest, chi2, f_classif
selected_features = SelectKBest(f_classif, k=5 ).fit(x_train, y_train)

selected_features_df = pd.DataFrame({'feature': list(x_train.columns),
‘scores': selected_features.scores_})

df_new = selected_features_df.sort_values(by='scores', ascending=False)

C:\Users\Ayori\anaconda3\lib\site-packages\sklearn\utils\validation.py:63: D
ataConversionWarning:

A column-vector y was passed when a 1d array was expected. Please change the
shape of y to (n_samples, ), for example using ravel().
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I [75] 2

#Ploting K-Best Feature Importances
#Visualizing Accuracies

f, ax = plt.subplots(figsize=(10,5))
x_pos = np.arange(len(x_train.columns))

#Create Bars

ax.bar(x_pos, df_new.scores, color=(0.5, 0.7, 0.9, 0.9))
ax.set_ylabel('Scores', size=14)

ax.set_title('K-BEST FEATURE IMPORTANCE', size=20)

plt.xticks(x_pos, df_new.feature, rotation=90)
plt.grid(True)

plt.show()
K-BEST FEATURE IMPORTANCE
60000 t t
50000 4
40000 4
o
G 30000
ot
20000 4
10000 A
o.
o = < oM =~ = T ) e SN B O R T TP a o
mEEH:o§Bmu= 4 @ g b % g 2
8" E8gEREEE BT 2 £z
El EI EI E
a' o =z 0O
s B2
&~ 2
=4
2
localhost:8888/notebooks/OneDrive - Solent University/Documents/COM 726/new project.ipynb 50/64

114



07/09/2022, 01:25 new project - Jupyter Notebook
In [76]:
#Spearman's Correlation

# Generate a mask for the upper triangle
mask = np.zeros_like(train_prep.corr(method = 'spearman') , dtype=np.bool)
mask[np.triu_indices_from(mask)] = True

# Generate a custom diverging colormap
cmap = sns.cubehelix_palette(n_colors=12, start=-2.25, rot=-1.3, as_cmap=True)

# Draw the heatmap with the mask and correct aspect ratio
plt.figure(figsize=(18,15))
sns.heatmap(train_prep.corr(method = 'spearman') ,annot=True, mask=mask, cmap=cmap, vmax=1

plt.show()

C:\Users\Ayori\AppData\Local\Temp/ipykernel_16448/3325240931.py:4: Deprecati
onWarning:

‘np.bool” is a deprecated alias for the builtin “bool’. To silence this warn
ing, use "bool” by itself. Doing this will not modify any behavior and is sa
fe. If you specifically wanted the numpy scalar type, use "np.bool_" here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/d
evdocs/release/1.20.0-notes.html#deprecations (https://numpy.org/devdocs/rel
ease/1.20.0-notes.html#deprecations)

DEPTH_MD -

075

050

025

GROUP_encoded

FORMATION_encoded

DTS_COMSB +

GROUP._encoded I
Lithology_encoded
DTS_COMB -

FORMATION_encoded
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In [77] ¢

#using a cut off to select features - Spearman Correlation
def spearmancorr(data, threshold):
column_corr = set() #Set all the names of the correlates columns
corr_matrix = data.corr(method='spearman')
for i in range(len(corr_matrix.columns)):
for j in range(i):
if abs(corr_matrix.iloc[i, j]) > threshold:
colname = corr_matrix.columns[i]
column_corr.add(colname)
return column_corr

In [78]:

corr_features = spearmancorr(train_prep, 0.8)
corr_features

Out[78]:

{'Bs’,
'DTC',
'DTS',
‘DTS_COMB',
'DTS_pred’,
'RDEP',
'RMED" ,
'"WELL_encoded"',
'Z_LoC'}
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In [79]:

corr_features = spearmancorr(train_prep, 0.65)
corr_features

out[79]:

{'ss’,
‘DI
‘DTS,
'‘DTS_COMB',
'DTS_pred’,
'RDEP',
'RHOB',
'RMED",
'WELL_encoded"',
'z Loc*}

Tn' [2.]%

#feature importance using random forest

from sklearn.ensemble import RandomForestClassifier,RandomForestRegressor
rf_model = RandomForestRegressor(n_estimators=200)
rf_model.fit(x_train,y_train.values.ravel())

train_feature = x_train.columns

importances = rf_model.feature_importances_

indices = np.argsort(importances)

plt.title('Feature Importances"')
plt.barh(range(len(indices)),importances[indices], color='r', align='center')
plt.yticks(range(len(indices)),[train_feature[i] for i in indices])
plt.xlabel('Relative Importance')

plt.show()
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In' [ ]z

from sklearn.ensemble import IsolationForest
from sklearn.covariance import EllipticEnvelope
from sklearn.neighbors import LocalOutlierFactor
from sklearn.svm import OneClassSVM

train_impl= train_imp.copy()

#Method 1: Local Oultlier Factor

lof = LocalOutlierFactor(contamination=6.3)
yhat = lof.fit_predict(train_impl)

mask = yhat != -1

train_out = train_impl[mask]
#display(train_data_Llof)

In: [ s

train_out

In T 1

#Method 2: Isolation Forest

isolation = IsolationForest(contamination=0.1)
yhatl = isolation.fit_predict(train_imp1l)
maskl = yhatl != -1

train_iso = train_impl[mask1]

I [ s

train_iso

In [ J:

#Method 3: Standard Deviation Method (traditional)
train_std = train_impl[np.abs(train_impl-train_impl.mean()) <= (3*train_impl.std())]
train_std = train_std.dropna()

Tn [ &

#Method 4: One-class SVM

svm = OneClassSVM(nu=0.1)

that = svm.fit_predict(train_impl)
mask = that != -1

train_svm = train_impl[mask]

10 5 7

#Checking outlier revoved data lenght

print('Number of points before outliers removed :', len(train_impl))
print('Number of points after outliers removed with Outlier Factor :', len(train_out))
print('Number of points after outliers removed with Isolation Forest :', len(train_iso))
print('Number of points after outliers removed with Standard Deviation:', len(train_std))
print(‘'Number of points after outliers removed with One-class SVM :', len(train_svm))
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In' [ 1z

#Box plotting data after outlier removal
box_features = ['RDEP','RMED', 'RSHA','GR', 'DTC', 'NPHI', 'RHOB', 'BS', 'CALI','SP']

plt.figure(figsize=(15,10))

#Before outliers removal

plt.subplot(3,2,1)
train_impl[box_features].boxplot()
plt.ylim([-15, 15])

plt.title('Before Outlier Removal', size=15)

#Methods of outlier removal

plt.subplot(3,2,2)

train_std[box_features].boxplot()

plt.title('After Outlier Removal with Standard Deviation Filter', size=15)

plt.subplot(3,2,3)

train_iso[box_features].boxplot()

plt.ylim([-10, 10])

plt.title('After Outlier Removal with Isolation Forest', size=15)

plt.subplot(3,2,5)
train_out[box_features].boxplot()
plt.title('After Outlier Removal with Local Outlier Factor', size=15)

plt.subplot(3,2,6)

train_svm[box_features].boxplot()

plt.title('After Outlier Removal with One-class SVM', size=15)
plt.tight_layout(1.7)

plt.show()

In [ 12

#Pair plot after outlier removal

pairplot_features = ['RDEP','RMED', 'RSHA','GR', 'DTC', 'NPHI', 'RHOB', 'BS', 'CALI','SP']

sns.pairplot(train_iso, diag_kind='kde', vars = pairplot_features, plot_kws = {'alpha':

Normalisation

In: [ )%

#Inputing missing values by introducing median

from sklearn.impute import SimpleImputer

miss = SimpleImputer(missing_values=np.nan, strategy='median')

miss.fit(test_prepl)

test_imp = miss.fit_transform(test_prepl)

test_imp=pd.DataFrame(test_imp, columns=['DEPTH_MD', 'X_LOC', 'Y_LOC', 'Z_LOC', 'CALI',
'"RHOB', 'GR', 'NPHI', 'PEF', 'DTC', 'SP', 'BS', 'ROP', 'DTS', 'DRHO',

'GROUP_encoded ',

'FORMATION_encoded', 'WELL_encoded', 'Lithology_encoded'])

test_imp
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In' [ 1z

#Inputing missing values by introducing median

from sklearn.impute import SimpleImputer

miss = SimpleImputer(missing_values=np.nan, strategy='median')

miss.fit(hidden_prepl)

hidden_imp = miss.fit_transform(hidden_prep1)

hidden_imp=pd.DataFrame(hidden_imp, columns=[‘DEPTH_MD', 'X_LOC', 'Y_LoC', 'Z_LOC', 'CALI',
"RHOB', 'GR', 'NPHI', 'PEF', 'DTC', 'SP', 'BS', 'ROP', 'DTS', 'DRHO',

'"GROUP_encoded ',

'FORMATION_encoded', 'WELL_encoded', 'Lithology_encoded'])

hidden_imp

In [ 1z

x_train.iloc[:,:18]

In [ e

from sklearn.linear_model import LogisticRegression
import warnings

warnings.filterwarnings('ignore', category=FutureWarning)
from sklearn.preprocessing import StandardScaler, Normalizer, MinMaxScaler
from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import PowerTransformer
x_test = test_imp[x_header]

y_test = test_imp[y_header]

x_hidden = hidden_imp[x_header]

y_hidden = hidden_imp[y_header]

##Min-Max scaler

scaler = MinMaxScaler()

x_train_scaled = x_train.copy()

x_test_scaled = x_test.copy()

x_hidden_scaled = x_hidden.copy()

x_train_scaled.iloc[:,:18] = scaler.fit_transform(x_train_scaled.iloc[:, :18])
x_test_scaled.iloc[:,:18] = scaler.transform(x_test_scaled.iloc[:,:18])
x_hidden_scaled.iloc[:,:18] = scaler.transform(x_hidden_scaled.iloc[:,:18])

In [ Js

##standard scaler

sc = StandardScaler()
x_train_sc = x_train.copy()
x_test_sc = x_test.copy()
x_hidden_sc = x_hidden.copy()

x_train_sc.iloc[:,:18] = sc.fit_transform(x_train_sc.iloc[:,:18])
x_test_sc.iloc[:,:18] = sc.transform(x_test_sc.iloc[:,:18])
x_hidden_sc.iloc[:,:18] = sc.transform(x_hidden_sc.iloc[:,:18])
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In' [ ]z

#Robustscaler

from sklearn.preprocessing import RobustScaler
rs= RobustScaler()

x_train_rs = x_train.copy()

x_test_rs = x_test.copy()

x_hidden_rs = x_hidden.copy()

x_train_rs.iloc[:,:18] = rs.fit_transform(x_train_rs.iloc[:,:18])
x_test_rs.iloc[:,:18] = rs.transform(x_test_rs.iloc[:,:18])
x_hidden_rs.iloc[:,:18] = rs.transform(x_hidden_rs.iloc[:,:18])

In [ ]:

##Normalization

norm = Normalizer()
x_train_norm = x_train.copy()
x_test_norm = x_test.copy()
x_hidden_norm = x_hidden.copy()

x_train_norm.iloc[:,:18] = norm.fit_transform(x_train_norm.iloc[:,:18])

x_test_norm.iloc[:,:18] = norm.transform(x_test_norm.iloc[:,:18])
x_hidden_norm.iloc[:, :18] = norm.transform(x_hidden_norm.iloc[:,:18])
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In' [ ]z
#Box plotting data after Scaling ---- NO LOG

#box_features = ['RDEP', 'RMED', 'RSHA','GR', 'DTC', 'NPHI', 'RHOB', 'BS’', 'CALI']
box_features = ['GR', 'CALI', 'SP', 'RDEP', 'DTC', 'NPHI', 'RHOB','RMED', 'RSHA']
plt.figure(figsize=(15,10))

# 0. Before Normalization

plt.subplot(3,2,1)
x_train[box_features].boxplot()
plt.title('Before any type of Scaling', size=15)

# 1. After MinMax Scaler
plt.subplot(3,2,2)
x_train_scaled[box_features].boxplot()
plt.title('After MinMax Scaler', size=15)

# 2. After Standardization
plt.subplot(3,2,3)
x_train_sc[box_features].boxplot()
plt.ylim([-15, 40])

plt.title('After Standardization', size=15)

# 3. After robust scaler
plt.subplot(3,2,4)
x_train_norm[box_features].boxplot()
plt.title('After Robust scaler', size=15)

# 4. After Normalization
plt.subplot(3,2,5)
x_train_norm[box_features].boxplot()
plt.title('After Normalization', size=15)

plt.tight_layout(1.7)
plt.show()

Comparing the performance of scaling

In [ ]
#Fitting a logistic regression model #### KEEP THIS ONE

1r = LogisticRegression(C=1e-3, solver="saga", max_iter=10000, verbose=1)
#lr = LogisticRegression()

#Score with no Scale/Normalization

1r.fit(x_train, y_train.values.ravel())
print('The acuracy score withouth Normalization/scaling', lr.score(x_test, y_test))

00 A -

# 1. Score after Scaling
1r.fit(x_train_scaled, y_train.values.ravel())
print('1. The accuracy score after Scaling', lr.score(x_test_scaled, y_test))
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In' [ 1z

# 2. Score after Standardization
1r.fit(x_train_sc, y train.values.ravel())
print('2. The acuracy score after Standardization', lr.score(x_test_sc, y_test))

In [ Je

# 3. score after robustscaler

1r.fit(x_train_rs, y train.values.ravel())
print('3. The acuracy score after Standardization', lr.score(x_test_rs, y_test))

In: [ 1z

# 4. Score after Normalization
1r.fit(x_train_norm, y_train.values.ravel())
print('4. The accuracy score after Normalization', 1lr.score(x_test_norm, y_test))

In: [ 1z

y_test

Ini [ ]2

#can we make new features by combining previous ones?
import featuretools as ft
from woodwork.logical_types import Categorical
df_features = trainl
es = ft.EntitySet(id = 'observations')
es = es.add_dataframe(dataframe_name='observations',6dataframe = df_features.reset_index(),
index = 'index',
logical_types={"FORMATION": Categorical,
"GROUP": Categorical})
features, ft_names = ft.dfs(entityset = es, target_dataframe_name = 'observations',
trans_primitives = ['multiply_numeric'],
#trans_primitives = ['add_numeric', 'multiply numeric',
# 'subtract_numeric', 'divide_numeric’, 'dif
max_depth=2)
features.columns

Volume of shale (vsh): gamma ray (gr) , spontaneous potential (sp) Porosity (phi): neutron porosity (nphi),
density (den), sonic (dt) Water saturation (sw): deep resistivity (deep_res)

In [ ]z

# Volume of shale by gamma ray

gr_cl = 17 # gr clean or minimum
gr_sh = 157 # gr of shales or maximum

GR= train_impl['GR"]
vsh = (GR - gr_cl)/(gr_sh - gr_cl) # Similar to the unity-base normalization

vsh = np.maximum(np.minimum(vsh, 1), 0.0001)

e T I

vsh
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In' [ 1z
from sklearn.model_selection import train_test_split

# NPHI training Data
train_nphi = train_prep[train_prep.NPHI.notna()]

#Labels and faatures
X_nphi = train_nphi.drop([ 'NPHI'], axis=1)
Y_nphi = train_nphi[ "NPHI']

#Imputation
X_nphi_inp = X_nphi.apply(lambda x: x.fillna(x.median()), axis=0)

#Spliting into nphi_train and nphi_validation sets
X_nphi_train, X_nphi_val, Y_nphi_train, Y_nphi_val = train_test_split(X_nphi_inp, Y_nphi, t

print('Splitted training data shape is {} and validation data shape is {}'.format(X_nphi_tr
#Predicting NPHI

from sklearn.metrics import max_error

from xgboost import XGBRegressor

model1000 = XGBRegressor()
model1000.fit(X_nphi_train, Y_nphi_train.values.ravel(), early_stopping_rounds=100, eval_se

train_predl = model1000.predict(X_nphi_train)
val_predl = modell10e0@.predict(X_nphi_val)

print('Train error:', max_error(Y_nphi_train, train_predl))
print('validation error:', max_error(Y_nphi_val, val_predl))
#Visual check on the predictions (Validation Set)
plt.figure(figsize=(25, 5))

plt.plot(list(range(100)), Y_nphi_val[25000:25100])
plt.plot(list(range(100)), val_pred1[25000:25100], color='g")

# Filling nan values before predicting nphi
X_train_nphi = train_prep.drop(['NPHI"'], axis=1)
X_train_nphi2 = X_train_nphi.apply(lambda x: x.fillna(x.median()), axis=0)

X_test_nphi = test_prep.drop(['NPHI'], axis=1)
X_test_nphi2 = X_test_nphi.apply(lambda x: x.fillna(x.median()), axis=0)

X_hidden_nphi = hidden_prep.drop([ 'NPHI'], axis=1)
X_hidden_nphi2 = X_hidden_nphi.apply(lambda x: x.fillna(x.median()), axis=0)

#Predicting nphi (COMPLETE DATASETS)

train_prep[ 'NPHI_pred'] = model100@.predict(X_train_nphi2)
test_prep[ 'NPHI_pred'] = modell@00.predict(X_test_nphi2)
hidden_prep[ 'NPHI_pred'] = modell@00.predict(X_hidden_nphi2)

#Inputing nan values in nphi with nphi_PREDICTED

train_prep[ '"NPHI_COMB'] = train_prep[ 'NPHI']
train_prep[ '"NPHI_COMB'].fillna(train_prep[ 'NPHI_pred'], inplace=True)

test_prep[ '"NPHI_COMB'] = test_prep[ 'NPHI']
test_prep[ '"NPHI_COMB'].fillna(test_prep[ 'NPHI_pred'], inplace=True)

hidden_prep[ 'NPHI_COMB'] = hidden_prep[ 'NPHI']
hidden_prep[ 'NPHI_COMB'].fillna(hidden_prep[ 'NPHI pred'], inplace=True)

4 4
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In' [ ]z
from sklearn.model_selection import train_test_split

# RHOB training Data
train_rhob = train_prep[train_prep.RHOB.notna()]

#Labels and faatures
X_rhob = train_rhob.drop([ 'RHOB'], axis=1)
Y_rhob = train_rhob[ 'RHOB"]

#Imputation
X_rhob_inp = X_rhob.apply(lambda x: x.fillna(x.median()), axis=0)

#Spliting into rhob_train and rhob_validation sets

X_rhob_train, X_rhob_val, Y_rhob_train, Y_rhob_val = train_test_split(X_rhob_inp, Y_rhob, t

print('Splitted training data shape is {} and validation data shape is {}'.format(X_rhob_tr

#Predicting rhob
from sklearn.metrics import max_error
from xgboost import XGBRegressor

model1000 = XGBRegressor()

model1000.fit(X_rhob_train, Y_rhob_train.values.ravel(), early_stopping_rounds=100, eval_se

train_pred2 = model1000.predict(X_rhob_train)
val_pred2 = modell100@.predict(X_rhob_val)

print('Train error:', max_error(Y_rhob_train, train_pred2))
print('validation error:', max_error(Y_rhob_val, val_pred2))
#Visual check on the predictions (Validation Set)
plt.figure(figsize=(25, 5))

plt.plot(list(range(100)), Y_rhob_val[25000:25100])
plt.plot(list(range(100)), val_pred2[25000:25100], color='g"')

# Filling nan values before predicting rhob
X_train_rhob = train_prep.drop(['RHOB'], axis=1)
X_train_rhob2 = X_train_rhob.apply(lambda x: x.fillna(x.median()), axis=0)

X_test_rhob = test_prep.drop(['RHOB'], axis=1)
X_test_rhob2 = X_test_rhob.apply(lambda x: x.fillna(x.median()), axis=0)

X_hidden_rhob = hidden_prep.drop(['RHOB'], axis=1)
X_hidden_rhob2 = X_hidden_rhob.apply(lambda x: x.fillna(x.median()), axis=0)

#Predicting rhob (COMPLETE DATASETS)

train_prep[ 'RHOB_pred'] = model100@.predict(X_train_rhob2)
test_prep['RHOB pred'] = modell@00.predict(X_test_rhob2)
hidden_prep[ 'RHOB_pred'] = modell@00.predict(X_hidden_rhob2)

#Inputing nan values in rhob with rhob_PREDICTED
train_prep[ 'RHOB_COMB'] = train_prep['RHOB']
train_prep[ 'RHOB_COMB'].fillna(train_prep[ 'RHOB_pred'], inplace=True)

test_prep[ '"RHOB_COMB'] = test_prep[ 'RHOB"]
test_prep[ 'RHOB_COMB'].fillna(test_prep[ 'RHOB_pred'], inplace=True)

hidden_prep[ 'RHOB_COMB'] = hidden_prep[ 'RHOB"]
hidden_prep[ 'RHOB_COMB'].fillna(hidden_prep[ 'RHOB pred'], inplace=True)

4
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Appendix C: Base model for 100,000 sample of data

07/09/2022, 02:33 Model - Jupyter Notebook

In [1]:

# importing required Libraries
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.cluster import KMeans
from tqdm import tqdm

import time

train = pd.read_csv("CSV_train.csv",low_memory=False,delimiter=";")
test=pd.read_csv("CSV_test.csv",low_memory=False,delimiter=",")
hidden=pd.read_csv("CSV_hidden_test.csv",low_memory=False,delimiter=",")

07/09/2022, 02:33 Model - Jupyter Notebook

In [2]3

# storing length of datasets

train_len = train.shape[@]

test_len = test.shape[@]

All_data = pd.concat((train,test,hidden)).reset_index(drop=True)

lithology keys = {30000: 'Sandstone’,
65030: 'Sandstone/Shale’,
65000: 'Shale’,
80000: 'Marl’,
74000: 'Dolomite’,
70000: 'Limestone’,
70032: 'Chalk’,
88000: 'Halite',
86000: 'Anhydrite’,
99000: 'Tuff',
90000: 'Coal’,
93000: 'Basement'}
All_data[ 'Lithology'] = All_data['FORCE_2020_ LITHOFACIES_LITHOLOGY'].map(lithology_keys)
All_data
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In [3]:

#dropping columns with high missing values

drop_cols = ['SGR', 'ROPA', 'RX0', 'MUDWEIGHT', 'DCAL','RMIC','FORCE_2020_LITHOFACIES_CONFID
All_data_drop = All_data.drop(drop_cols, axis=1)

# encoding categorical variables

All_data_drop[ 'GROUP_encoded'] = All_data_drop[ 'GROUP'].astype('category")

All_data_drop[ 'GROUP_encoded'] = All_data_drop[ 'GROUP_encoded'].cat.codes

All_data_drop['FORMATION encoded'] = All_data_drop['FORMATION'].astype('category")
All_data_drop['FORMATION_encoded'] = All_data_drop[ 'FORMATION_encoded'].cat.codes

All_data_drop['WELL_encoded'] = All_data_drop['WELL'].astype('category')

All_data_drop['WELL_encoded']

All_data_drop['Lithology_encoded']
All_data_drop['Lithology_encoded']

All_data_drop[ 'WELL_encoded'].cat.codes

All_data_drop['FORCE_2020 LITHOFACIES LITHOLOGY'].asty
All_data_drop['Lithology_encoded'].cat.codes

n

07/09/2022, 02:33 Model - Jupyter Notebook

In [5]:

#dropping categorial features replaces beforehan by encoded features

drop2 = All_data_drop.drop(['GROUP', 'FORMATION', 'WELL','FORCE_2020_ LITHOFACIES_LITHOLOGY',
07/09/2022, 02:33 Model - Jupyter Notebook
In [8]:

#Inputing missing values by introducing median
from sklearn.impute import SimpleImputer

miss =

SimpleImputer(missing_values=np.nan, strategy='median')

miss.fit(drop2)
All imp = miss.fit_transform(drop2)
All_imp=pd.DataFrame(All_imp, columns=['DEPTH_MD', ‘'X_LOC', 'Y_LOC', 'Z_LOC', 'CALI', 'RSHA

All_imp

“RHOB', "GR', “NPHI", "PEF™, "DIC", "SP', "BS", "ROR', "DIS", 'DRHO",
'"GROUP_encoded ',
'FORMATION_encoded', 'WELL_encoded', 'Lithology_encoded'])
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En [1a]s

from sklearn.preprocessing import StandardScaler, Normalizer, MinMaxScaler

x_header=[ 'DEPTH_MD', 'X_LOC', 'Y_LOC', 'Z_LOC', 'CALI', 'RSHA', 'RMED', 'RDEP’,
"RHOB', 'GR', 'NPHI', 'PEF', 'DTC', 'SP', 'BS', 'ROP', 'DTS', 'DRHO',
'GROUP_encoded', 'FORMATION_encoded', 'WELL_encoded']

y_header=['Lithology encoded']

x_train = train_imp[x_header]

y_train = train_imp[y_header]

x_test = test_imp[x_header]

y_test = test_imp[y_header]

x_hidden = hidden_imp[x_header]

y_hidden = hidden_imp[y_header]

##Min-Max scaler

scaler = MinMaxScaler()
x_train_scaled = x_train.copy()
x_test_scaled = x_test.copy()
x_hidden_scaled = x_hidden.copy()

x_train_scaled.iloc[:,:18] = scaler.fit_transform(x_train_scaled.iloc[:, :18])

x_test_scaled.iloc[:,:18] = scaler.transform(x_test_scaled.iloc[:,:18])
x_hidden_scaled.iloc[:,:18] = scaler.transform(x_hidden_scaled.iloc[:,:18])
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In [12]:

#Supervised Algorithms

from sklearn import model_selection

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression, LogisticRegression

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier

from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import mean_squared_error, accuracy_score, recall_score, precision_sco

from sklearn.neighbors import KNeighborsRegressor

from pprint import pprint

from sklearn.model_selection import StratifiedKFold

from sklearn.naive_bayes import GaussianNB

import xgboost

from xgboost import XGBClassifier

from sklearn.neighbors import KNeighborsClassifier

#Comparing base models accuracies by using k-fold cross validation - 10 folds

from sklearn.model_selection import cross_val_score

new_train = pd.concat((x_train_scaled, pd.DataFrame(y_train, columns=["Lithology_encoded"])

#Randomly sampling data
sampled_train = new_train.sample(n=100000, random_state=0)

#Spliting training data
x_train_sam = sampled_train.drop(["Lithology encoded"], axis=1)
y_train_sam = sampled_train["Lithology_encoded"]

C:\Users\Ayori\anaconda3\lib\site-packages\xgboost\compat.py:36: FutureWarni
ng: pandas.Int64Index is deprecated and will be removed from pandas in a fut
ure version. Use pandas.Index with the appropriate dtype instead.

from pandas import MultiIndex, Inté4Index

In [13]:

estimator = LogisticRegression(C=1le-3, solver='saga', max_iter=4000)

score = cross_val_score(estimator, x_train_sam, y_train_sam.values.ravel(), cv=10, scoring=

score
out[13]:

0.4781277833239425

In [14]:

estimatorl = DecisionTreeClassifier()

score = cross_val_score(estimatorl, x_train_sam, y_train_sam.values.ravel(), cv=10, scoring

score
out[14]:

0.8637868813236393
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In' [15] =

estimator2 = RandomForestClassifier()
score = cross_val_score(estimator2, x_train_sam, y_train_sam.values.ravel(), cv=10, scoring
score

Out[15]:

©0.9143748285935347

In [17]:

estimator3 = XGBClassifier()
score3 = cross_val_score(estimator3, x_train_sam, y_train_sam.values.ravel(), cv=18, scorin
score3

C:\Users\Ayori\anaconda3\lib\site-packages\xgboost\sklearn.py:1224: UserWa -
rning: The use of label encoder in XGBClassifier is deprecated and will be
removed in a future release. To remove this warning, do the following: 1)
Pass option use_label_encoder=False when constructing XGBClassifier objec
t; and 2) Encode your labels (y) as integers starting with o, i.e. 0, 1,
2, ..., [num_class - 1].

warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\Ayori\anaconda3\lib\site-packages\xgboost\data.py:250: FutureWarn
ing: pandas.Int64Index is deprecated and will be removed from pandas in a
future version. Use pandas.Index with the appropriate dtype instead.

elif isinstance(data.columns, (pd.Inté64Index, pd.RangeIndex)):

[15:39:53] WARNING: ..\src\learner.cc:1115: Starting in XGBoost 1.3.0, the
default evaluation metric used with the objective 'multi:softprob’' was cha
nged from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like
to restore the old behavior.

C:\Users\Ayori\anaconda3\lib\site-packages\xgboost\sklearn.py:1224: UserWa
rning: The use of label encoder in XGBClassifier is deprecated and will be
removed in a future release. To remove this warning, do the following: 1)

In [18]:

estimator4 = GradientBoostingClassifier()
scored = cross_val_score(estimator4, x_train_sam, y_train_sam.values.ravel(), cv=10, scorin
score4

out[18]:

0.8359888930126212

In [19]:

from sklearn.neighbors import KNeighborsClassifier

estimator5 =KNeighborsClassifier()

score5 = cross_val_score(estimator5, x_train_sam, y_train_sam.values.ravel(), cv=18, scorin
score5

Out[19]:

0.879973736174572
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In [20]:

Model - Jupyter Notebook

from sklearn.neighbors import KNeighborsClassifier

estimator6é =SVC()

score6 = cross_val_score(estimator6, x_train_sam, y_train_sam.values.ravel(), cv=10, scorin

score6

out[20]:

0.4762872789526972

In [21]:

from catboost import CatBoostClassifier
estimator7 =CatBoostClassifier()
score7 = cross_val_score(estimator7, x_train_sam, y_train_sam.

score?7

Learning rate set to ©.099538
1.
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from lightgbm import LGBMClassifier

estimator8 =LGBMClassifier()
score8 = cross_val_score(estimator8, x_train_sam, y_train_sam.

score8

out[23]:

0.7853414136709407
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Appendix D: Data augmentation

In

[13]:

def augment_features_window(X, N_neig):

# Parameters
N_row = X.shape[@]
N_feat = X.shape[l]

# Zero padding
X = np.vstack((np.zeros{(N_neig, N_feat))}, X, (np.zeros((M_neig, N_feat)))))

Loop over windows
X_aug = np.zeros{(N_row, N_feat*(2*N_neig+1)))
for r in np.arange(N_row)+N_neig:
this_row = []
for ¢ in np.arange(-N_neig,N_neig+l):
this_row = np.hstack{(this_row, X[r+c]))
X_aug[r-N_neig] = this_row

return X_aug

# Feature gradient computation function
def augment_features_gradient(X, depth):

# Compute fegtures gradient

d_diff = np.diff{depth).reshape((-1, 1))
d_diff[d_diff==8] = .80l

X_diff = np.diff{X, axis=@)

X_grad = X_diff / d_diff

# Compensate for Last missing value
¥_grad = np.concatenate{(X_grad, np.zeros({1l, X_grad.shape[1])}))

return X_grad

#Feature ougmentation function
def augment_features({X, well, depth, M_neig=1}:

# Augment feotures

¥_aug = np.zeros{(X.shape[@], X.shape[1l]*(N_neig*2+2}))

for w in np.unique(well):
w_idx = np.where(well == w)[@]
X_aug_win = augment_features_window(X[w_idx, :], N_neig)
X_aug_grad = augment_features_gradient(X[w_idx, :], depth[w_idx])
X_aug[w_idx, :] = np.concatenate((X_aug win, X_aug grad), axis=1)

# Find padded rows
padded_rows = np.unique{np.where(X_aug[:, 8:7] == np.zeros({1, 7}))[8]1)

return ¥_aug, padded rows

¥_train_arg, padded_rows = augment_features(x_train_scaled.values, train_well, train_depth)
¥_test_arg, padded_rows = augment_features(x_test_scaled.values, test_well, test_depth)
¥_hidden_arg, padded_rows = augment_features({x_hidden_scaled.values, hidden_well, hidden_depth)

: RAINIMNG DATA before argumentation iz {} and its shape after argumentation iz {}'.format(x_train_scaled.shape, ¥ _train_arg.shape))

EST DATA before argumentation is {} and its shape after argumentation is {}'.format(x_test_scaled.shape, »_test_arg.shape))
IDDEN DATA before argumentation is {} and its shape after argumentation is {}'.format{x_hidden_scaled.shape, x_hidden_arg.shape))
4 »

The shape of the TRAINING DATA before argumentation is (1178511, 21) and its shape after argumentation is (1178511, 84)
The shape of the TEST DATA before argumentation is (136786, 21) and its shape after argumentation is (136786, B84)
The shape of the HIDDEN DATA before argumentation is (122397, 21) and its shape after argumentation is (122357, 84)
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Appendix F: Feature engineering

In

[16]:

# calculating p-impedonce

train_imp['PI"] = train_imp.RHOE * (le&/train_imp.DTC)
test_imp['PI'] = test_imp.RHOB * (le&/test_imp.DTC)
hidden_imp["PI'] = hidden_imp.RHOB * (le6/hidden_imp.DTC)

# calculating s-impedance

train_imp['SI"] = train_imp.RHOE * (le&/train_imp.DTS)
test_imp['SI'] = test_imp.RHOB * (le&/test_imp.DTS)
hidden_imp['5I'] = hidden_imp.RHOB * (le6/hidden_imp.DTS)

#calculating Shear modulus (G)

train_imp['G'] = ((le6/train_imp.DTS)**2) * train_imp.RHOB
test_imp['G"] = ((le6/test_imp.DTS)**2) * test_imp.RHOB
hidden_imp['G"] = (({le6/hidden_imp.DT5)*#2) * hidden_imp.RHOB

#calculating Bulk modulus (K)

train_imp['K'] = (((le6/train_imp.DTC)**2) * train_imp.RHOB) - (4 * train_imp.G/3)
test_imp['K"] = ({(le6/test_imp.DTC)**2) * test_imp.RHOB) - (4 * test_imp.G/3)
hidden_imp["K"] = (({le6/hidden_imp.DTC}**2) * hidden_imp.RHOB) - (4 * hidden_imp.G/3)

# calculate the shale volume

train_imp["VSHALE"] = (train_imp.GR - np.min(train_imp.GR)) / (np.max(train_imp.GR) - np.min{train_imp.GR)})
test_imp["VSHALE™] (test_imp.GR - np.min{test_imp.GR}) / (np.max{test_imp.GR)} - np.min(test_imp.GR)})
hidden_imp["VSHALE™] = (hidden_imp.GR - np.min{hidden_imp.GR)) / (np.max(hidden_imp.GR) - np.min(hidden_imp.GR})
#train_impl. head()

# calculate the totol porosity

train_imp['PHIT'] = np.sqrt{({{({train_imp.NPHI)*(train_imp.NPHI)+{train_imp.RHOB)*(train_imp.RHOB)}})}/2)
test_imp['PHIT'] = np.sgri({({(test_imp.NPHI)*{test_imp.NPHI)+(test_imp.RHOB)*(test_imp.RHOB)})}/2)
hidden_imp[ "PHIT"] = np.sqri({{({hidden_imp.NPHI)*(hidden_imp.NPHI }+(hidden_imp.RHOB)*(hidden_imp.RHOB)})}))/2)
#train_impl.tail()

# calculate effective porosity

train_imp['PHIE'] = train_imp.PHIT*(1-train_imp.VSHALE)
train_imp = train_imp[train_imp['PHIE"] !=8]
train_imp['PHIE'] = train_imp['PHIE"].abs()}

test_imp['PHIE'] = test_imp.PHIT*(1-test_imp.VSHALE)
test_imp = test_imp[test_imp['PHIE'] !=8]
test_imp['PHIE'] = test_imp['PHIE"].abs()

hidden_imp[ "PHIE"] = hidden_imp.PHIT*({1-hidden_imp.VSHALE)
hidden_imp = hidden_imp[hidden_imp['PHIE'] !=8]
hidden_imp['PHIE'] = hidden_imp['PHIE'].abs()
#train_impl.tail()
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Appendix G: Base model for entire dataset
This is similar for other models, only that different scenarios were
added.

07/09/2022, 02:49 New XGB model - Jupyter Notebook

In [1]:

# importing required libraries
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.cluster import KMeans
from tqdm import tqdm

import time

train = pd.read_csv("CSV_train.csv",low_memory=False,delimiter=";")
test=pd.read_csv("CSV_test.csv",low_memory=False,delimiter=",")
hidden=pd.read_csv("CSV_hidden_test.csv",low_memory=False,delimiter=",")

07/09/2022, 02:49 New XGB model - Jupyter Notebook

I [3]%

# storing length of datasets

train_len = train.shape[@]

test_len = test.shape[@]

All_data = pd.concat((train,test,hidden)).reset_index(drop=True)

lithology keys = {30000: 'Sandstone’,
65030: 'Sandstone/Shale’,
65000: 'Shale’,
80000: 'Marl’,
74000: 'Dolomite’,
70000: 'Limestone’,
70032: 'Chalk’,
88000: 'Halite',
86000: 'Anhydrite’,
99000: 'Tuff',
90000: 'Coal’,
93000: 'Basement’'}
All_data[ 'Lithology'] = All_data['FORCE_2020_LITHOFACIES_LITHOLOGY'].map(lithology_keys)
All_data

Out[3]:
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In [4]:

#dropping columns with high missing values
drop_cols = ['SGR', 'ROPA', 'RXO', 'MUDWEIGHT','DCAL','RMIC','FORCE_2020 LITHOFACIES_CONFID

All_data_drop = All_data.drop(drop_cols, axis=1)

07/09/2022, 02:49 New XGB model - Jupyter Notebook

In [8]:

#Inputing missing values by introducing median
from sklearn.impute import SimpleImputer

numeric_header=[ 'DEPTH_MD', 'X_LOC', 'Y_LOC', 'Z_LOC',
"CALI', 'RSHA', 'RMED', 'RDEP', 'RHOB', 'GR', 'NPHI', 'PEF', 'DTC',
‘sP', 'BS', 'ROP', 'DTS', 'DRHO', 'FORCE_2020_ LITHOFACIES_LITHOLOGY'

categorical_header=["WELL', 'GROUP', 'FORMATION','Lithology']
numeric=All_data_drop.select_dtypes(include=[np.number])

categorical= All_data_drop.select_dtypes(exclude=[np.number])

miss = SimpleImputer(missing_values=np.nan, strategy='median')
miss.fit(numeric)

numeric_imp = miss.fit_transform(numeric)
numeric_imp=pd.DataFrame(numeric_imp, columns=numeric_header)

miss2 = SimpleImputer(missing values=np.nan, strategy='most_frequent"')
miss2.fit(categorical)

categorical_imp = miss2.fit_transform(categorical)
categorical_imp=pd.DataFrame(categorical_imp, columns=categorical_header)
frames = [numeric_imp,categorical_imp]

result = pd.concat(frames,axis=1, join='inner"')
result
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In [9]:

# encoding categorical variables
result[ 'GROUP_encoded'] = result['GROUP'].astype('category')
result[ 'GROUP_encoded'] = result['GROUP_encoded'].cat.codes

result[ 'FORMATION_encoded']
result[ 'FORMATION_encoded']

result['FORMATION'].astype('category')
result['FORMATION_encoded'].cat.codes

result[ "WELL_encoded'] = result['WELL'].astype('category')
result[ '"WELL_encoded'] result[ '"WELL_encoded'].cat.codes

result[ 'Lithology _encoded']
result['Lithology_encoded']

result['FORCE_2020_ LITHOFACIES_LITHOLOGY'].astype('category')
result['Lithology_encoded'].cat.codes

In [10]:

#dropping categorial features replaces beforehan by encoded features
# drop2 = ALl _data_drop.drop([ 'GROUP', 'FORMATION', 'WELL', 'FORCE_20620 LITHOFACIES_LITHOLOGY

# # splitting dataset into training, test, and hidden sets
# train_prep = drop2[:train_Llen].copy()

# test_prep = drop2[train_Llen: (train_Len+test_Len)].copy()
# hidden_prep = drop2[(train_Llen+test_Len):].copy()

In [11]:

# train_prepl= train_prep.copy()
# test_prepl= test_prep.copy()
# hidden_prepl= hidden_prep.copy()

In [22]

train_imp = result[:train_len].copy()
test_imp = result[train_len:(train_len+test_len)].copy()
hidden_imp = result[(train_len+test_len):].copy()

In, [13]%

print(train_imp.shape)
print(test_imp.shape)
print(hidden_imp.shape)
(1176511, 27)

(136786, 27)
(122397, 27)

localhost:8888/notebooks/OneDrive - Solent University/Documents/COM 726/New XGB model.ipynb# 5/12

135



07/09/2022, 02:49 New XGB model - Jupyter Notebook

In [14]:

from sklearn.preprocessing import StandardScaler, Normalizer, MinMaxScaler

x_header=[ 'DEPTH_MD', 'X_LOC', 'Y_LOC', 'Z_LOC', 'CALI', 'RSHA', 'RMED', 'RDEP',
“RHOB* , “GR’, “NPHL*, *PEF"Y, “DIEC*, “SP*, “BS’, “ROP", "DIS", "DRHO®,
'"GROUP_encoded', 'FORMATION_encoded', 'WELL_encoded']

y_header=['Lithology encoded']

x_train = train_imp[x_header]

y_train = train_imp[y_header]

x_test = test_imp[x_header]

y_test = test_imp[y_header]

x_hidden = hidden_imp[x_header]

y_hidden = hidden_imp[y_header]

##Min-Max scaler

scaler = MinMaxScaler()
x_train_scaled = x_train.copy()
x_test_scaled = x_test.copy()
x_hidden_scaled = x_hidden.copy()

x_train_scaled.iloc[:,:18] = scaler.fit_transform(x_train_scaled.iloc[:, :18])
x_test_scaled.iloc[:,:18] = scaler.transform(x_test_scaled.iloc[:,:18])
x_hidden_scaled.iloc[:,:18] = scaler.transform(x_hidden_scaled.iloc[:,:18])
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In [16]:

A = np.load('penalty _matrix.npy')
def score(y_true, y_pred):
S = 0.0
y_true = y true.astype(int)
y_pred = y_pred.astype(int)
for i in range(@, y_true.shape[0]):
S -= A[y_true[i], y_pred[i]]
return S/y_true.shape[@]

136



07/09/2022, 02:49 New XGB model - Jupyter Notebook

In [17]*

#Supervised Algorithms

from sklearn import model_selection

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression, LogisticRegression

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import mean_squared_error, accuracy_score, recall_score, precision_sco
from sklearn.metrics import classification_report, accuracy_score

from sklearn.neighbors import KNeighborsRegressor

from pprint import pprint

from sklearn.model_selection import StratifiedKFold

from sklearn.naive_bayes import GaussianNB

import xgboost

from xgboost import XGBClassifier

from sklearn.neighbors import KNeighborsClassifier

#Comparing base models accuracies by using k-fold cross validation - 10 folds

from sklearn.model_selection import cross_val_score
model_xgb = XGBClassifier()
model_xgb.fit(x_train_scaled, y_train.values.ravel(), early_stopping rounds=100, eval_set=[

train_pred_xgb = model_xgb.predict(x_train_scaled)
open_pred_xgb = model_xgb.predict(x_test_scaled)
hidden_pred_xgb = model_xgb.predict(x_hidden_scaled)
#Printing Reports

C:\Users\Ayori\anaconda3\1lib\site-packages\xgboost\compat.py:36: FutureWarni
ng: pandas.Int64Index is deprecated and will be removed from pandas in a fut
ure version. Use pandas.Index with the appropriate dtype instead.

from pandas import MultiIndex, Inté4Index
C:\Users\Ayori\anaconda3\lib\site-packages\xgboost\sklearn.py:1224: UserWarn
ing: The use of label encoder in XGBClassifier is deprecated and will be rem
oved in a future release. To remove this warning, do the following: 1) Pass
option use_label_encoder=False when constructing XGBClassifier object; and
2) Encode your labels (y) as integers starting with @, i.e. 0, 1, 2, ..., [n
um_class - 1].

warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\Ayori\anaconda3\1lib\site-packages\xgboost\data.py:250: FutureWarnin
g: pandas.Int64Index is deprecated and will be removed from pandas in a futu
re version. Use pandas.Index with the appropriate dtype instead.

elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
C:\Users\Ayori\anaconda3\lib\site-packages\sklearn\utils\validation.py:63: D
ataConversionWarning: A column-vector y was passed when a 1d array was expec
ted. Please change the shape of y to (n_samples, ), for example using ravel
OF

return f(*args, **kwargs)

[02:03:54] WARNING: ..\src\learner.cc:1115: Starting in XGBoost 1.3.0, the d
efault evaluation metric used with the objective 'multi:softprob’ was change
d from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like to r
estore the old behavior.

[0] validation_@-mlogloss:1.69426

[99] validation_0-mlogloss:4.48642
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In [18]:

print('-------------ccmmmom- TRALN. SET REPORT oo aioimin oo s o i i iion )

print("Open set RMSE:", np.sqrt(mean_squared_error(y_train, train_pred_xgb)))
print('Open set penalty matrix score:', score(y_train.values, train_pred_xgb))
print('Open set report:', classification_report(y_train, train_pred_xgb))

o] 5 1 11 f (SISO R OPEN SET REPORT--=w==ssosoammmsamsi )

print("Open set RMSE:", np.sqrt(mean_squared_error(y_test, open_pred_xgb)))
print('Open set penalty matrix score:', score(y_test.values, open_pred_xgb))
print('Open set report:', classification_report(y_test, open_pred_xgb))

(o] 1 1) o (GO ————— HIDDEN SET REPORT-=-==s==smmomsammmnn- ey
print("Hidden set RMSE:", np.sqrt(mean_squared_error(y_hidden, hidden_pred_xgb)))
print('Hidden set penalty matrix score:', score(y_hidden.values, hidden_pred_xgb))
print('Hidden set report:', classification_report(y_hidden, hidden_pred_xgb))

Open set RMSE: 1.196822021310681
Open set penalty matrix score: [-0.47421158]

Open set report: precision recall fil-score support

2] 0.78 0.72 0.74 168937

I 0.83 0.97 0.89 720803

2 0.76 0.35 0.48 150455

3 0.84 0.58 0.69 56320

4 0.90 0.90 0.90 10513

5 0.79 0.19 0.30 1688

6 0.79 0.55 0.65 33329

F 0.93 0.89 0.91 1085

8 0.99 1.00 0.99 8213

9 0.87 0.41 0.56 3820

10 1.00 0.83 0.91 103

11 0.75 0.78 0.76 15245
accuracy 0.82 1170511

)
)
1
)
v
)
)
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In [20]:

from mpl_toolkits.axes_gridl import make_axes_locatable

import matplotlib.colors as colors

facies_colors = ['#F4DO3F', '#7cccl9’, '#196F3D", '#160599"', '#2756c4 ", '#3891f0", '#80d4ff", '#87
facies_labels = ['SS', 'S-S', 'SH', 'MR', 'DOL','LIM', 'CH','HAL', 'AN', 'TF', 'CO', 'BS']

#Facies_color_map

facies_color_map = {}

for ind, label in enumerate(facies_labels):
facies_color_map[label] = facies_colors[ind]

def pred_log(logs, well num, facies_colors, n_pred):
wells = logs['WELL'].unique()
logs = logs[logs['WELL'] == wells[well_num]]
logs = logs.sort_values(by='DEPTH_MD") #Sorting Llog by depth
cmap_facies = colors.ListedColormap(facies_colors[@:1len(facies_colors)], ‘indexed')

top
bot

logs.DEPTH_MD.min()
logs.DEPTH_MD.max()

f, ax = plt.subplots(nrows=1, ncols=(12+n_pred), figsize=(15, 12))
log_colors = ['black', 'red', 'blue', 'green', ‘purple’,'black’', ‘red', 'blue', 'green’

for i in range(7,18):
ax[i-7].plot(logs.iloc[:,i], logs.DEPTH_MD, color=log_colors[i])
ax[i-7].set_ylim(top, bot)
#ax[1-7].set_xlim(logs.iloc[:,1].min(), logs.iloc[:,1].max())

ax[i-7].set_xlabel(str(logs.columns[i]))
ax[i-7].invert_yaxis()
ax[i-7].grid()

for j in range((-1-n_pred), 0):
label = np.repeat(np.expand_dims(logs.iloc[:,j].values, 1), 100, 0)
im = ax[j].imshow(label, interpolation='none', aspect='auto', cmap=cmap_facies, vmin=
ax[j].set_xlabel(str(logs.columns[j]))

divider = make_axes_locatable(ax[-1])

cax = divider.append_axes("right", size="20%", pad=0.05)

cbar=plt.colorbar(im, cax=cax)

cbar.set_label((12*' ').join(['SS', 'S-S', 'SH', 'MR', 'DOL','LIM', 'CH','HAL', 'AN', '
cbar.set_ticks(range(©0,1)); cbar.set_ticklabels('")

f.suptitle('WELL LOGS '+str(wells[well_num]), fontsize=14,y=0.94)

In [26]:

#Storing results

test_xgb = test_imp.copy()
hidden_xgb = hidden_imp.copy()
#Saving Results

test_xgb[ 'XGB'] = open_pred_xgb
hidden_xgb[ 'XGB'] = hidden_pred_xgb

test_xgb.to_csv('test_xgb.csv', index=False)
hidden_xgb.to_csv('hidden_xgb.csv', index=False)
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Ih' [27]%

test_xgb = pd.read_csv('test_xgb.csv')
hidden_xgb = pd.read_csv('hidden_xgb.csv")
In [28]:

#Plotting predictions - HIDDEN DATASET
for i in range(1):
pred_log(hidden_xgb, i, facies_colors, 1)

WELL LOGS 15/9-23
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SOLENT

UNIVERSITY

SOUTHAMPTON

Ethics

Solent Students Staff Warsash Maritime

Sports Complex Alumni

Ethical clearance for research and innovation

projects

Project status

Status
Approved
Actions
Date Who Action Comments
11:39:00 04 July 2022 Femi Isiaq Supervisor approved
11:06:00 04 July 2022 Janet Ayorinde Principal investigator submitted
00:36:00 03 July 2022 Janet Ayorinde Principal investigator saved

Ethics release checklist (ERC)

Project details

Project name:

Principal investigator:
Faculty:

Level:

Course:

Unit code:
Supervisor name:

Supervisor search:

Other investigators:

app.solent.ac. ji 26536

CLASSIFICATION OF LITHOLOGY FACIES USING DEEP AND MACHINE LEARNING
MODEL P

Janet Ayorinde

Faculty of Business, Law and Digital Technologies ¥
Postgraduate v

Applied Artificial intelligence and data‘

COM 726 \

|Femi Isiaq
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a
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Checklist
Question Yes No
Q1. Will the project involve human participants other than the investigator(s)? O @

Q1a. Will the project involve vulnerable participants such as children, young peaple,
disabled people, the elderly, people with declared mental health issues, prisoners,
people in health or social care settings, addicts, or those with learning difficulties or
cognitive impairment either contacted directly or via a gatekeeper (for example a
professional who runs an organisation through which participants are accessed; a
service provider; a care-giver; a relative or a guardian)?

Q1b.Will the project involve the use of control groups or the use of deception?

Qlc. Will the project involve any risk to the participants' health (e.g. intrusive

intervention such as the administration of drugs or other substances, or vigorous
physical exercise), or involve psychological stress, anxiety, humiliation, physical pain or
discomfort to the investigator(s) and/or the participants?

Q1d. Will the project involve financial inducement offered to participants other than
reasonable expenses and compensation for time?

Qle. Will the project be carried out by individuals unconnected with the University but
who wish to use staff and/or students of the University as participants?

Q2. Will the project involve sensitive materials or topics that might be considered offensive, O @
distressing, politically or socially sensitive, deeply personal or in breach of the law (for example
criminal activities, sexual behaviour, ethnic status, personal appearance, experience of violence,
addiction, religion, or financial circumstances)?

Q3. Will the project have detrimental impact on the environment, habitat or species? O |@®

Q4. Will the project involve living animal subjects? O |@

Q5. Will the project involve the development for export of 'controlled' goods regulated by the O |@®
Export Control Organisation (ECO)? (This specifically means military goods, so called dual-use
goods (which are civilian goods but with a potential military use or application), products used
for torture and repression, radioactive sources.) Further information from the Export Control

Organisation [https://www.gov.uk/government/organisations/export-control-organisation]

Q6. Does your research involve: the storage of records on a computer, electronic transmissions, O |@®
or visits to websites, which are associated with terrorist or extreme groups or other security
sensitive material? Further information from the Information Commissioners Office

[https://ico.org.uk/for-organisations/guide-to-data-protection/

Declarations

|/we, the investigator(s), confirm that:

The information contained in this checklist is correct.

|/we have assessed the ethical considerations in relation to the project in line with the University Ethics
Policy.

|/we understand that the ethical considerations of the project will need to be re-assessed if there are
any changes to it.

https://ethics.app.solent.ac.uk/Project/Edit/26536
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|/we will endeavour to preserve the reputation of the University and protect the health and safety of all
those involved when conducting this research/enterprise project.

If personal data is to be collected as part of my project, | confirm that my project and |, as Principal
Investigator, will adhere to the General Data Protection Regulation (GDPR) and the Data Protection Act 2018.
| also confirm that | will seek advice on the DPA, as necessary, by referring to the Information Commissioner's
Office further guidance on DPA [https://ico.org.uk/for-organisations/guide-to-data-protection-404/] and/or
by contacting information.rights@solent.ac.uk [|. By Personal data, | understand any data that | will collect as
part of my project that can identify an individual, whether in personal or family life, business or profession.

I/we have read the prevent agenda [https://www.gov.uk/government/publications/prevent-duty-
guidance/prevent-duty-guidance-for-higher-education-institutions-in-england-and-wales].

sibility

hitps:ffethics.app.solent ac.uk/ProjectEditi26536
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