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Abstract 

Understanding the geology of a reservoir requires accurate identification of its 

lithological facies. Lithological facies classification is the process of determining 

rock lithology by analyzing indirect measurements such as well logs. Well logging is 

a standard tool for determining reservoir parameters. The interpretation of well 

logging data, on the other hand, may take some time but machine learning (ML) can 

automate the process in less time. 

The objective of the study is to investigate the use of machine learning and well logs 

in classifying rock facies, and to improve the accuracy of different machine learning 

model compared to previous published research on the same dataset. A total of 118 

wells, with 12 known lithology from a field in North Sea were available for analysis 

and classification, the dataset is divided into three for training, testing and 

validation purpose. 

Nine machine learning model which include Random Forest (RF), Decision tree, 

Support vector machine (SVM), Gradient boosting (GB), Categorical boosting 

(CatBoost), Light gradient boosting (LGBM), Extreme gradient boosting (XGB), K-

Nearest Neighbour (KNN), and logistic regression was designed and trained with a 

sample of the dataset. The random forest model outperforms the other methods in 

classifying the lithofacies in the dataset with 91% accuracy. For each model, I also 

tested various scenarios including feature engineering, machine learning 

imputation, data augmentation and outlier removal to improve the performance of 

the models. 

Random Forest, CatBoost, XGB and Gradient boosting performed best without any 

form of feature engineering, outlier filter and ML imputation. Logistic regression, 

decision tree and SVM performed best when the dataset has ML imputation (scenario 

2), KNN and LGBM performed best with feature engineering. The top 3 model were 

then used to train the entire train set and evaluated with the open and hidden 

dataset. The RF base model performed best with an accuracy of 78% and 80%, on the 

open and hidden data respectively, the accuracy on the open data increased by 1% 

when the data is trained with hyperparameters and augmented data. The accuracy 

of XGB model increased by 4% and 3% when the data was trained with additional 

feature. 
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According to the findings that I obtained, machine learning algorithms have a 

significant application in the automatic classification of lithology facies with high 

accuracy and efficiency. It has the potential to significantly improve the rock 

physical property estimation process while simultaneously reducing the amount of 

manual labour required. 
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CHAPTER ONE 

INTRODUCTION 

1.1 General Statement  

Machine learning (ML) algorithms are designed to locate and correctly predict 

patterns in multivariate data as quickly as possible. The application of machine and 

deep learning techniques to investigate volumes of diverse multivariate geospatial 

data holds enormous promise for industry and research in the geosciences. The oil 

and gas business are critical to increasing energy demands to increase profit. To 

overcome the problems connected with diverse exploration and production 

operations, newer unconventional wells are drilled for the extraction of 

hydrocarbons, which necessitates technological innovations. The oil and gas business 

demands increasingly creative technologies to remain competitive in the globalized 

energy market. These technologies must enable continuous, cost-effective, high-

quality, and long-term production. 

The fields of big data analytics, machine learning, and deep learning have become 

particularly attractive study subjects for a wide range of applications as a direct 

result of the development of methods involving high levels of computational 

complexity. (Wang and Alexander 2015; Anifowose et al. 2014). These methods are 

capable of processing large volumes of data, extracting meaningful information from 

raw data, and identifying hidden patterns in the data. These advanced techniques 

can quickly filter out noise, reduce dimensionality, model nonlinear relationships, 

and are occasionally useful in dealing with reservoir uncertainties (Bhattacharya et 

al. 2016; Wang and Alexander 2015). 

As a result, ML algorithms have been developed to handle complicated 

categorization and estimation challenges (Chaki et al. 2015; Avseth and Mukerji 

2002). Machine learning has various advantages, including being cost-effective, 

allowing for speedy mitigation of real-world problems, real-time deployment, 

allowing for real-world automation, and being found to be more resilient and 

reliable. ML models, on the other hand, have significant challenges with data 
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reliance, data availability, immature infrastructure, and multidisciplinary 

knowledge (Bhattacharya et al. 2016; Wang and Alexander 2015) 

Machine learning models can help solve real challenges in the petroleum industry. 

As a result, hybrid computational models, such as ensemble models, are becoming 

increasingly popular. These techniques are critical, especially when high 

classification or estimate accuracy is desired, because they can improve a ML model's 

performance by improving its modelling strategy (Anifowose et al. 2014). 

The classification of facies is a crucial stage in reservoir modelling. During oil and 

gas exploration and production, a precise understanding of facies is crucial for 

enhancing the characterization of reservoir features. It aids in the better knowledge 

of the geology, petrophysical, and reservoir properties by geologists and engineers. 

The oil and gas industry has paid close attention to the rapid development of data-

driven modelling methods in recent years (Sebtosheikh and Salehi 2015 and Xie et 

al. 2018). Research is being conducted on several methodologies, and these 

approaches are being implemented in a variety of contexts, such as well log 

interpretation, seismic signal analysis, and seismic interpretation (Zu et al. 2018; 

Qu et al. 2019; Chen 2020; Lopez et al. 2020). 

Geoscience data are usually characterized by a limited number, distribution of 

direct observations, irreducible noise, high intraclass variability and interclass 

similarity. As a result, the machine learning method or algorithms chosen, as well 

as the specifics of how they are applied, must be appropriate for the context of 

geoscience data. Therefore, this study will primarily focus on the use of feature 

engineering and ensemble models for lithofacies identification using well logs.  

 

1.2. Problem statement 

The identification and mapping of porous and permeable sandstone reservoirs 

storing commercial volumes of hydrocarbons is critical to the success of any 

conventional hydrocarbon exploration programme (Primmer et al., 1997). 

Traditionally, geologists manually review well-logs to recognise various lithofacies 

layers based on their experience. However, when complex well-logs are interpreted 

manually, there is always a significant risk of human error. Well log data usually 
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overlap, and they are not linearly connected which causes manual interpretation of 

lithofacies to fail.  It is also time consuming and expensive to manually interpret 

well logs.  

Utilizing machine learning algorithms to systematically speed up the process and 

accurately predict the rock lithofacies from well log is one of the potential solutions 

to this problem. To achieve the desired level of accuracy in the outputs, the data-

driven algorithms require a significant amount of data, which must be utilised during 

the training process in a balanced manner. 

Building a reservoir model to produce hydrocarbons requires an understanding of the 

petrophysical characteristics of rocks and their spatial distribution in relation to 

lithofacies (Bai et al. 2012). The more well logs that need to be interpreted, the 

more challenging the task becomes. Therefore, it is necessary to automate the 

reservoir characterization process. As a result, geologists may create more accurate 

quantitative evaluation models of various rock qualities, which can enhance oil 

production. Machine learning methods, such as ensembles, may be able to address 

issues in the oil and gas sector. In this thesis, the ensemble approach and feature 

engineering are specifically examined to address problems with lithofacies 

identification. 

1.3. Research question 

1. What makes some supervised machine learning algorithms so good at 

predicting lithofacies from geophysical well log data? 

2. Which machine learning algorithm will best classify lithology in this data? 

3. Can data augmentation improve the performance of the classification model? 

4. Can creating new features from the existing ones improves the classification 

accuracy? 

1.4. Objectives 

This study attempts to apply machine learning methods for lithofacies classification 

and aims to achieve the following objectives: 

1. To classify lithofacies using ensemble classifiers. 

2. To enhance the prediction accuracy of lithofacies classification using ML 

techniques as compared to earlier published research on the same dataset. 
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CHAPTER TWO 

THEORETICAL BACKGROUND AND LITERATURE REVIEW 

2.1. Machine Learning  

Machine learning uses the ability of computers to learn, execute calculations, store 

data, and receive instruction swiftly to process and train data for classification or 

prediction purpose (Sivia 1996; Burl et al. 1998). Reinforcement learning is one of 

the four primary paradigms that comprise machine learning, along with unsupervised 

learning, semi-supervised learning, and supervised learning. 

There is a wide variety of machine learning algorithms, and each one has its own 

specific set of advantages and disadvantages for the purpose of resolving geoscience 

issues. Machine learning algorithms (MLA) uses an automatically adaptive approach 

to recognise patterns in data and then apply the learned relationships to other data 

sets with patterns that are similar. MLAs have the capability to generate predictions 

for classification and regression problems inductively, which is particularly helpful 

when the process being investigated is represented by high-dimensional multivariate 

input data (Witten and Frank 2005; Kotsiantis 2007; Kanevski et al. 2009). 

 

Common examples of supervised machine learning algorithms include Decision 

Trees, Random Forests (RF), Support Vector Machines (SVM), Linear and Logistic 

Regression, Naive Bayes, Linear Discriminant Analysis, k-Nearest Neighbor (KNN) 

algorithms, and Neural Networks. Other examples include Linear Regression, Naive 

Bayes, and Linear Discriminant Analysis. Each of these independent machine learning 

models can be placed into one of three broad categories: linear models, nonlinear 

models, or Ensemble models. 

Unsupervised learning techniques, which are sometimes referred to as exploratory 

data analysis techniques in statistics, are responsible for automatically determining 

the organisation of a dataset. Because of this, relying on a priori categorization or 

other limits and assumptions that have been pre-imposed is reduced. Unsupervised 

methods are thought to be more robust than supervised methods because they 

estimate the manifold that best represents a dataset only based on the input data. 
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Likewise, unsupervised methods are resistant to extreme observations or outliers in 

the dataset. Cluster analysis techniques are a group of techniques that contain most 

unsupervised machine learning techniques. These techniques allow clusters to be 

inferred using Euclidian, probabilistic, or similarity distance measurements. Hidden 

Markov Models, Self-Organizing Maps (SOM), Gaussian Mixture Models, Hierarchical 

Clustering, and k-Means Clustering are some of the most common types of clustering 

methods. 

 

2.2. Well and well logs 

Subsurface formations and wireline logs (also called well logs) are used as part of 

the research process. Therefore, knowing the structure of formations in a well is 

essential. It is equally important to understand the concept of a well as it is to 

understand what a formation is and how it is distinct from groups. The physical and 

mineralogical characteristics of rocks and their interactions with those around them 

are used to classify them into lithostratigraphic units, such as formations and groups. 

A lithostratigraphic unit can be composed of sedimentary, igneous, or metamorphic-

equivalent rocks. These are the three primary types of rock that occur naturally. 

The idea that more recent layers are constructed on top of older ones is the most 

important concept of stratigraphy(Geological Survey of Norway, 2015). The 

classification of lithostratigraphic units can be done using formations and groups. A 

series of beds that is distinct from other beds both above and below it and is thick 

enough to be shown on geological maps is referred to as a formation. While a 

formation is the most fundamental formal unit of lithostratigraphic classification, a 

group can be defined as the succession of two or more connected formations that 

share significant and diagnostic lithologic features (Salvador and Murphy 1998). 

The most accurate approach for learning the structure of the lithostratigraphic units 

in a well would be obtained through the extraction of core samples taken from the 

reservoir rock. However, since this process requires a lot of labour and is expensive, 

it is not commonly used in the oil industry (Dubois et al. 2007). Considering the 

abundance of additional important methods, core samples alone are not sufficient 

to obtain sufficient information about a well to adequately interpret the properties 
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of the reservoir. Wireline or downhole logging is the method that has gained the 

most popularity in the modern oil and gas industry. 

Wireline logging is a method that plots precise information about geological 

formations against each depth point of the well (Leyland 2017).This information is 

obtained by sending down a cable into the borehole that is equipped with several 

different measuring instruments. After reaching each predetermined depth in the 

well, the various measurement devices collect data on a variety of signals, including 

resistivity, density, and porosity, amongst others. This can be done either during the 

drilling operations or after they have been completed (Vakarelov 2016). 

 

2.2.1. Gamma ray log 

The gamma ray log is a tool that is used to determine the total amount of natural 

gamma radiation that is emitted by a formation. The isotope series composed of 

uranium, radium, thorium, and potassium-40, are the primary contributors to this 

gamma radiation. It is common practise to denote the gamma ray log with the symbol 

GR. We can detect and quantify the presence of radioactive elements thanks to the 

ability of the isotopes that are produced when these chemical elements interact to 

build structures at the nuclear energy level. These isotopes do this by emitting 

gamma rays (Søland and Thue 2019). After being released by an isotope in the 

formation, gamma rays gradually lose energy because of collisions with other atoms 

in the rock over a period (compton scattering). The process of Compton scattering 

continues right up until the gamma ray's energy becomes so low that the formation 

can completely absorb it. The amount of Compton scattering will be directly 

proportional to the density of the formation (Glover 2014). The gamma ray is an 

instrument that can be utilised to assist in the interpretation of lithology. Even 

though the gamma ray log on its own is unable to determine distinct lithology 

formations, when combined with other logs, it can provide useful information 

lithology (Glover 2014). 
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2.2.2. Resistivity Log 

Electrical resistivity is a measure of how much a material can impede the flow of an 

electrical current. A material's resistivity or specific resistance is its resistance over 

a unit cube (typically 1 m3) at a given temperature. The resistivity of underground 

formations can be measured with electrical logs (or "resistivity logs"). Resistivity 

readings can be taken at three depths: shallow, medium, and deep. It is impossible 

to overstate the importance of electrical logs to a Petro-physicist’s toolkit. This is 

because they can be used to calculate the stock tank oil originally in place (STOOIP) 

(Asquith et al. 2004). 

A rock is made up of millions of grains, the density of which is determined by the 

porosity of the given rock. The space between the grains of a rock with high porosity 

is larger, making the rock more permeable. Electrical currents are typically not 

carried through rock matrix, but rather through salty formation waters. Dry rock is 

an excellent electrical insulator, meaning that it does not transmit electrical 

currents. Interstitial water in the pore space or absorbed in the solid matrix of rocks 

(e.g., clay minerals) will be less resistive or more conductive.  

Resistivity log can also be used for qualitative purposes, such as lithology indications, 

facies and electro-facies analysis, correlation, overpressure determination, shale 

porosity determination, indications of compaction, and source rock examination. 

 

2.2.3. SP log 

In general, the spontaneous potential instrument separates porous, permeable 

sandstones from surrounding shales by measuring natural electrical potentials that 

arise in boreholes. The "natural battery" results from the interaction of two solutions 

with varying ion concentrations when drilling mud with a salinity that differs from 

formation fluids is utilised. Ions spread from a concentrated solution (usually 

formation water) to a diluted one. The SP instrument measures the natural potential 

in millivolts, which is produced by the ion flow, which is electrical current 

(Schlumberger et al. 1934) 

The spontaneous potential log (SP), also known as self-potential, measures the self-

potential differential between the borehole and the surface in the absence of any 
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artificially applied current. SP can be measured in two ways: potential gradient and 

potential amplitude. The potential gradient technique uses a pair of electrodes 

spaced at a constant distance (typically between 5 and 10 m) apart and a division 

by that distance to determine the gradient (Singha et al. 2021). 

There are primarily four applications for the SP log: 

• The identification of beds that are permeable. 

• Estimating Rw. 

• A measure of the amount of shale present in a formation. 

• Correlation. 

 

2.2.4. Sonic Log 

The sonic or acoustic log is used to measure the amount of time it takes for an elastic 

wave to move through the formation. This can be used to calculate the velocity of 

elastic waves as they move through the formation. The bore hole-centred sonic log 

tool which comprises of an acoustic transmitter and two receivers are separated 

from one another and from the transmitter. This is done to ensure that the sonic 

pulse is radiated in a symmetrical manner and that measurements are taken 

concurrently on all sides of the hole. In addition, this helps ensure that the hole is 

not distorted.  The time it takes for an elastic wave, or a "sound" pulse, to travel 

from a transmitter to a receiver on the device is measured. The transmitted pulse 

is both intense and fleeting in duration. This is attenuated and dispersed (the wave 

energy is spread out over time and space) as it travels through the rock in its various 

forms (loss of energy through absorption of energy by the formations). Since 

different rock types have varying degrees of transparency, the log can be used to 

determine the porosity of a hole that is filled with liquid (Rider 1991). 

The main uses of sonic log are:  

• Recording "seismic" velocity and travel time in a borehole.  

• Synthetic seismograms can be made possible with the help of the "seismic" data 

provided.  
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• Estimation of porosity (together with the FDC and CNL tools).  

• Lithostratigraphic correlation.  

• Lithology identification.  

• Source rock detection  

• Fracture detection. 

• Detection of over-pressures and compaction in rocks.  

 

2.2.5. Density Log. 

The purpose of the density log is to determine the overall density of the rock. It 

establishes the relationship between density and porosity in the rock. Gas-containing 

deposits and evaporites are also detected with density log. It is primarily employed 

in determining the total porosity of the formation. Furthermore, it helps in the 

recognition of evaporites and the detection of gas-bearing formations (Rider 2011). 

Like other active open hole tools, a density log operates by projecting gamma rays 

into a formation and measuring its scattering at Cesium-137, which produces gamma 

rays with a high energy, is the source used by the sondes. The scattering back gamma 

rays that detectors pick up depend on the formation's electron density. 

The radioactive source is installed on the well bore wall in a protected sidewall skid 

and emits medium gamma rays into the formation. Gamma ray waves can be thought 

of as energetic particles. The gamma ray loses some of its energy to the electron 

during the creation process as these energy particles (photons) collide with them. 

This is referred to as Compton scattering. The greater the number of electrons in 

the formation, the more energy is wasted due to collisions. The energy loss is 

proportional to porosity if the matrix density is known. Lower bulk density is implied 

by lower electron density. Density log is a very good method for lithological 

identification when used with neutron log. To calculate porosity, the formation 

density log is typically used. Other important uses of density log are finding gas 

deposits and locating mineral composition (particularly evaporites). Combining 

formation density log data with neutron log data is one of the most reliable methods 

for identifying lithologies in a borehole. 
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2.2.6. Neutron Porosity Log 

The neutron logging equipment sends neutrons into the formation, where they lose 

energy and produce high-energy gamma rays. Because of the interaction with 

hydrogen atoms, the dispersed neutrons lose energy. The number of hydrogen atoms 

in a formation has the greatest impact on the neutron log. Its primary application is 

to determine the porosity of a formation. As a result, the energy of absorbing 

neutrons decreases as the number of hydrogen atoms increases. It indicates that in 

a porous rock, the count on the receiving end is low, and vice versa. 

The neutron porosity log and the density log are frequently combined on suitable 

scales. The combination of the two logs is one of the most accurate indicators of the 

lithology of the subsurface that is currently known. This is because both the neutron 

log and the density log evaluate the porosity of a formation, and discrepancies 

between the two logs can be helpful in determining the nature of certain formations 

(Rider 1991).  

 

2.3. Literature Review 

In reservoir description and characterization, lithofacies classification is a critical 

and necessary task. In the exploration and development of hydrocarbon, reliable 

lithofacies recognition is helpful in increasing the precision and reducing the 

uncertainty of reservoir estimation (Xiong et al. 2010; Liu et al. 2017; Zhang et al. 

2018). Facies is a sedimentary unit that can be identified from its surroundings by 

its petrophysical features. Facies that can be distinguished based on its mineralogy 

and grain size is called lithology facies or lithofacies. Using well logs to determine 

lithofacies or rock types is a crucial task for the field development plan. With the 

help of core measurements and seismic data, geologists integrate several types of 

well logs and analyze their physical qualities to derive petrophysical features of the 

subsurface (Hong et al. 2020). Outcrops, core data, and petrography are common 

methods for recognizing and identifying lithology, however outcrops may not 

appropriately represent what is in the subsurface, and core data are expensive to 

acquire.  
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Earliest work of lithofacies classification focused on using well log data together 

with multivariate statistical approaches. In the early 1980s and 1990s, lithofacies 

classification employed the technique of grouping and clustering features. Delfiner 

et al. 1987 and Busch et al. 1987 used a discriminant function analysis to identify 

lithofacies. Gill et al. (1993) used the correlation of zones between well and 

multivariate clustering to classify lithofacies.  

Other ML algorithms like Support Vector Machine (SVM), Naïve Bayes (NB), Artificial 

Neural Network (ANN), fuzzy logic, Principal Component Analysis (PCA) became 

popular for solving geoscience problem in 1990. For example, Li and Anderson-

Sprecher, 2006 used Naïve bayes. Zhang et al. (1999) and Dubois et al. (2007) used 

Artificial Neural Network (ANN), while Al-Anazi and Gates (2010), Sebtosheikh et al. 

(2015) and Hall (2016) used Support Vector Machine (SVM) in their research for 

lithofacies classification. 

Qi and Carr (2006) and Wang and Carr (2012) both used ANN for the classification of 

lithofacies based on well logs, and they discovered that ANN produces a significant 

accuracy. According to the work of Graves (2012), neural network models struggle 

with sequential data because there is no record of previous entries in its internal 

structure, therefore most research that uses neural network combines it with a post 

processing step that considers the likelihood of succession such as probabilistic 

statistical analysis. Deep neural networks (DNNs) are one of the most popular new 

approaches to automatic lithofacies classification. One of the advantages of DNN is 

the ability to get high level features from input data because of the large number 

of layers (Santos et al. 2021). 

Convolutional Neural Network (CNN) is a type of DNN that consists of multiple 

convolutional filter layers. Silva et al. 2015 and Lindberg et al. 2015 both identified 

lithofacies using CNNs. Tschannen et al. (2017) used an inception convolution 

network to predict lithofacies, their prediction was satisfactory in the first order but 

failed at replicating the high accuracy of a geologist interpretation. In a gas reservoir 

at Ordos basin, Lin et al. (2020) used a Long Short Term Memory (LSTM) network 

using Adam optimizer to analyze data from well logs. According to their findings, 

the LSTM network can correctly categorize rock lithofacies in thin interbedding 

layers and carbonate reservoirs that have thin interbedding lithofacies. Recently, 
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Xie et al. (2018) evaluated five common ML algorithms and discovered that selecting 

parameters and reservoir type have a significant effect on the accuracy of the ML 

method used. 

Hall (2016) used support vector machine to solve the problem of geophysical 

lithofacies classification in the Panoma field, and he achieved an accuracy of 43%. 

Using same panoma field data, the Society of Exploration Geophysicists (SEG) held 

a machine learning competition in 2016 to forecast lithofacies (Hall 2016). 

Participants employed a variety of models, such as boosted tree models, neural 

networks, k-nearest neighbours (k-NN) and support vector machines (Hall and Hall 

2017). Boosted tree method was the most accurate model, with an accuracy of 0.64 

(Hall and Hall 2017). Imamverdiyev and Sukhostat, 2019 developed a 1D-CNN using 

three optimizers, and they compared the model to recurrent neural network (RNN), 

LSTM, SVM and k-NN algorithm. They showed that 1D-CNN (Adagrad) is better 

compared to other method with an accuracy of 76.87%. 

Based on the well logs, Li and Zhang (2016) investigated the use of data-driven 

models to make predictions about the presence of sand, shale, and a mixture of the 

two. Several distinct data analytics algorithms, including logistic regression, 

gaussian discriminant analysis, random forest, and support vector machine, were 

put through their paces to identify the model that provided the most accurate 

predictions. Liu et al. (2020) improved the accuracy of lithology identification by 

developing a Multikernal Relevance Vector Machine using a set of inverted elastic 

attributes. There method preserves the benefits of traditional Support Vector 

Machine algorithms while optimising processes with Bayesian analyses. When 

compared to traditional methods, their results show advantages such as better 

generalisation and accuracy in identifying rock facies. 

Using stratigraphic interpretation and well logs, Kim et al. (2018) developed random 

forest models to assist in the classification of seismic facies. The significance of each 

input feature in seismic facies classification is also determined by their model. This 

not only helps in the selection of important features, but it also reduces the amount 

of computational power that is required for the subsequent establishment of more 

complex models. 
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To assist in the differentiation of lithology types such as sand, silt, and clay, Lopez 

et al. (2020) developed several data-driven models including least-squares 

polynomial approximation, random forest, and support vector machine, amongst 

others. Their research demonstrates that data-driven models can differentiate 

between different types of lithologies by analysing the values of electrical resistivity 

and seismic wave velocity. The findings also indicate that the random forest model's 

forecasted lithology has a higher statistical correlation with the lithology that was 

found in their research. 

Geologic domain knowledge was employed by Bestagini et al. (2017) to create a set 

of augmented characteristics for categorising well log data that were used by the 

top teams in the competition. They estimated gradients of each of the well log 

values and included non-linear characteristics. This demonstrates how the 

characteristics of the rock change as depth increases, which may imply the 

environment of deposition. With the help of this feature, the machine learning 

system can perceive the surroundings of a sample, providing context that it can 

utilise to distinguish between different rock kinds. 

Chen and Zeng (2018) showed that the performance of the classifier may be 

enhanced by utilising petrophysical features computed from the base well logs. They 

adapted Archie's equation to include the log ratio of two measures, resistivity, and 

neutron porosity, which increased the precision of their predictions. 

Another competition based on lithofacies classification was organized by FORCE with 

the objective of correctly predicting lithology patterns using well logs. The top 3 

team achieved an accuracy of 80.1% and 79.9% using extreme gradient boost, and 

79.9% using Random Forest respectively. Each of these models appears to excel in 

some areas, thus combining them to create an ensemble model with a high 

predictive ability seems like the logical next step for this study. 
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Table 2.1: Summary of related works on the use of machine and deep learning on 

lithology classification 

 

S/N Authors Summary of research 

1 Delfiner et al. (1987). Used Bayesian rule to assign depth level to a 

lithofacies using a database. 

2 Busch et al. (1987). They compared different model by employing the 

statistical method of discriminant analysis and 

chose model the best model that predict lithology 

with 75 % accuracy. 

3 Qi and Carr (2006). They classified lithofacies with ANN, using well 

logs and they reported absolute accuracies range 

from 70.37 to 90.82 percent. 

4 Wang and Carr (2012). Their study discovered that the neural network 

performs better for shale lithofacies prediction 

than the discriminant analysis. 

5 Gill et al. (1993). They successfully Used hierarchical clustering 

algorithm for zoning and recognizing log facies, 

and this means that log facies might be helpful 

for interwell correlations and locating reversal 

faults in boreholes.  

6 Silva et al. (2015). This study focused on using a back-propagation 

neural network algorithm for petrographic 

classification using well logs, and their result 

shows the effectiveness of ANN with an accuracy 

of 85.62 percent. 

7 Lindberg et al. (2015). The authors used convolutional hidden Markov 

model for facies classification, and they reported 

that the combination of neutron porosity log, 

resistivity and gamma ray log as a subset yielded 

the best prediction.  
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8 Tschannen et al. (2017). They trained an inception network, to extract 

reservoir stratigraphy from well data. 

The model was suitable in the first instance,  

but it was unable to precisely repeat the 

geologists' work since it lacked higher resolution 

core sample data and additional well readings. 

9 Lin et al. (2020). On a tight gas sandstone reservoir, the LSTM-

based Adam optimizer can more accurately 

identify rock facies than the Sgdm and Rmsprop 

optimizers can, provided that the sample size and 

number of hidden layer neurons are appropriately 

set. 

10 Hall (2016). With the use of a support vector machine, the 

author was able to solve the geophysical 

lithofacies classification issue in the Panoma field 

with an accuracy of 43%. 

11 Hall and Hall (2017). The Society of Exploration Geophysicists (SEG) 

held a machine learning competition in 2016 to 

forecast lithofacies. It was reported that beyond 

using the most suitable model, the use of domain 

knowledge to create new features improved the 

classification model's accuracy. 

12 Imamverdiyev and 

Sukhostat (2019). 

The authors used different algorithm to classify 

lithofacies and their result shows that 1D-CNN 

model is more accurate compared to SVM, k-

NN, RNN, and LSTM. 

13 Li and Anderson-

Sprecher (2006). 

Core and well log data was used to compare the 

classification of naïve bayes to a linear 

discriminant analysis, and their result indicates 

that both methods performed satisfactorily.  

14 Zhang et al. (1999). For post-stack seismic lithology prediction, they 

combined DNN and CNNs with continuous wavelet 

transforms (CWTs). In terms of prediction 

https://www.sciencedirect.com/topics/engineering/support-vector-machine
https://www.sciencedirect.com/topics/engineering/recurrent-neural-network
https://www.sciencedirect.com/topics/engineering/long-short-term-memory
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accuracy, CWT-CNN models outperform DNN, 

CNN, and CWT-DNN models. 

15 Dubois et al. (2007). The authors compared four models for facies 

classification and discovered that to match the 

performance of neural networks, the non-

parametric approaches such as k-nearest 

neighbour and fuzzy logic would need to be 

significantly improved. 

16 Al-Anazi and Gates 

(2010). 

The lithology and permeability predictions made 

by SVM are contrasted with those made by 

conventional regression and back-propagation 

neural networks. According to statistical error 

analysis, the SVM method outperforms neural 

network methods in terms of identification of the 

lithology and permeability estimates. 

17 Sebtosheikh et al. 

(2015). 

This study used SVM in predicting lithology, and 

their results indicate that SVM is a practical 

method for lithology prediction, and that the 

radial basis function kernel, which produces the 

lowest misclassification rate error, is more 

accurate than other kernel functions. 

18 Merembayev et al. 

(2021) 

The authors employed wavelet transformation in 

machine learning to classify lithologies of well 

logs from Norway and Kazakhstan, and they 

reported an accuracy of 94.8% and 98% 

respectively. 

 

19 Masapanta (2021) This study investigated the use of different 

machine learning model such as tree based 

gradient boosting and neural network to classify 

lithologies in a Norway field, and he achieved an 

accuracy of 82.5% on the test data. 
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20 Force (2020) A machine learning competition for facies 

classification was held in 2020 using the Norway 

data provided by FORCE, and the top 3 model 

achieved an accuracy of 80%, 78% and 79& on the 

blind dataset. 
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CHAPTER THREE 

METHODOLOGY 

3.1. Dataset 

This research will make use of the datasets that were collected during the "Machine-

Learning Lithology Prediction Contest" that took place in 2020 and was organised by 

FORCE, a cooperating forum that is run by Norwegian oil and gas companies and 

authorities. The data can be downloaded from 

https://drive.google.com/drive/folders/0B7brcfeGK8CRUhfRW9rSG91bW8?resourc

ekey=0-NsLk7JL-IDDxUKPVp0dZrw. The dataset is made up of 118 wells drilled off 

the coast of Norway, with locations spanning the Viking Graben to the south and 

north. Geophysical well logs are single-point observations of rock physical 

characteristics recorded in a well at a certain depth. Three distinct data subsets, 

each having a different function, are also included in the data. There are 98, 10, 

and 10 wells in the training, open test, and hidden test subsets, respectively. 

Well logs, interpreted lithofacies, and lithostratigraphy are all included in the 

dataset. The well logs contain the well's name, the measured depth, the wireline 

measurement locations, as well as the well logs CALI, RDEP, RHOB, DHRO, SGR, GR, 

RMED, RMIC, NPHI, PEF, RSHA, DTC, SP, BS, ROP, DTS, DCAL, and MUDWEIGHT. An 

explanation of the abbreviations is shown in the table 3.1. 

Table 2.1: Description of the dataset features. 

S/N FEATURES DESCRIPTION 

1 FORCE_2020_LITHOFACIES_CONFIDENCE Qualitative 

measurement of 

interpretation 

confidence 

2 GR Gamma Ray Log 

3 FORCE_2020_LITHOFACIES_LITHOLOGY Interpreted lithofacies 

4 RSHA Shallow Reading 

Restitivity 

measurement 

https://drive.google.com/drive/folders/0B7brcfeGK8CRUhfRW9rSG91bW8?resourcekey=0-NsLk7JL-IDDxUKPVp0dZrw
https://drive.google.com/drive/folders/0B7brcfeGK8CRUhfRW9rSG91bW8?resourcekey=0-NsLk7JL-IDDxUKPVp0dZrw
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5 RMED Medium Deep Reading 

Restitivity 

measurement 

6 RDEP Deep Reading 

Restitivity 

measurement 

7 RMIC Micro Resisitivity 

measurement 

8 SP Self-Potential Log 

9 RXO Flushed Zone 

Resistivity 

measurement 

10 DTS Shear wave sonic log 

(us/ft) 

11 ROPA Average Rate of 

Penetration 

12 DTC Compressional waves 

sonic log (us(ft)) 

13 NPHI Neutron Porosity log 

14 PEF Photoelectric 

Absorption Factor log 

15 RHOB Bulk Density Log 

16 DTC Compressional waves 

sonic log (us(ft)) 

17 DRHO Density Correction log 

18 SGR Spectra Gamma Ray log 

19 BS Borehole size 

20 DCAL Differential Caliper log 

21 MUDWEIGHT Weight of Drilling Mud 

22 ROP Rate of Penetration 

23 CALI Caliper log 

24 DEPTH_MD Measured Depth 
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25 X_loc X location of sample 

26 Y_loc Y location of sample 

27 X_loc Z(TVDSS) location of 

sample 

 

3.2. Exploratory Data Analysis (EDA)  

Exploratory data analysis is a process that involves investigating data to discover 

relevant information and preexisting patterns. Understanding the nature of the data 

and developing early potential strategies or methodologies for addressing the 

challenges associated with lithofacies classification is the primary purpose of EDA in 

this study. EDA makes use of data visualisation, which includes plotting the well log 

data, creating cross plots and correlation plots to better understand the dataset, 

and many other similar activities. 

 

3.3. Data Preparation  

Data preparation and cleaning is an essential part of machine learning, and it's also 

one of the first steps. The Pandas library comes with a variety of utilities that can 

be used for data manipulation, cleaning, and visualisation (Matplotlib). When 

cleaning data, certain steps must be taken, such as removing outliers, dropping 

variables that are not required for the training of the model, dropping null or missing 

values, and replacing values that are missing. The purpose of outlier detection and 

removal is to eliminate anomalies that resulted from measurement errors. When 

attempting to predict rock lithofacies using well log data, it is assumed that each 

type of rock lithofacies will produce its own unique set of log readings. All the well 

logs need to be consistent and balanced throughout the lithological formation that 

is being analysed to make an accurate prediction of the lithofacies. 
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3.4. Data Processing  

Initial pre-processing of the original raw logs is required to remove any depth-related 

anomalies, any inaccuracy from borehole logging, and the presence of hydrocarbons 

or other fluids. Feature scaling is used to normalise data variables or features such 

that they all fall into the same range, such as -1 to 1 (Youn and Jeong 2009). In most 

cases, the range of raw data values fluctuates greatly, which means that without 

normalisation, objective functions in machine learning algorithms may not perform 

well. 

 

3.5. Feature engineering  

This process will involve the use of domain knowledge to choose the most suitable 

features for prediction, transforming or creating new features from raw data with 

the aim of increasing the accuracy of the prediction. 

 

3.6. Data Augmentation  

This is a technique that can be used to artificially expand the size of a training set 

by creating modified data from the existing one. This is accomplished using a 

technique known as Data Transformation. If you want to avoid overfitting your 

model, or if the initial dataset is too small to train on, or even if you just want to 

get better performance out of your model, it is a good method to use. 

 

3.7. Classification Algorithms 

The data contains numerous discrete labels (or integer values) therefore, this might 

be termed a multilabel classification problem. Several machine learning methods 

developed during the previous decade might be utilised to tackle this challenge. 

Several algorithms were tested during the workflow's development. Random forest, 

decision tree classifier, k-nearest neighbour (KNN), SVM, and linear models were 

among the techniques investigated. 



22 
 

3.7.1. Decision tree 

A non-parametric supervised learning method applied to regression and 

classification problems. It is structured in a hierarchical manner, and its components 

include a root node, branches, internal nodes, and leaf nodes. 

3.7.2. Random Forest 

A random forest (RF) approach is used to classify an instance label based on the label 

(i.e., facies label) predicted most frequently by an ensemble of decision trees 

(Breiman 2001; James et al. 2013). The term "random forest" (RF) refers to a method 

of machine learning that, as its name suggests, includes elements of randomness 

within its fundamental operations. Each tree is generated and fitted using a bagging 

technique that is based on the random selection (with replacement) of samples from 

the training set. This improves the stability and accuracy of the machine learning 

classification (Breiman 2001; James et al. 2013). The random forest model helps 

reduce bias in the model and improves the performance of the model by taking into 

consideration predictions made by many independently created decision trees that 

were generated at random and trained using groups of data points that were chosen 

at random. 

3.7.3. K–Nearest Neighbors (KNN) 

KNN is an easy supervised learning method. During training, a KNN model stores the 

coordinates and values of every data point it encounters. Using the input data, the 

model determines the k-nearest points to make its predictions. The majority class 

of the nearest points is the prediction in a classification problem, while the average 

of the nearest points is the prediction in a regression problem. While this method 

appears simple, it has proven to be quite effective when dealing with large amounts 

of data. Changing a model's hyperparameter can result in a noticeable shift in 

performance (Mohamed et al. 2019). 

 

3.7.4. Support Vector Machine (SVM)  

Support Vector Machines (SVMs) are one of the most widely used machine learning 

methods. SVMs find the line that maximises the separation between the points of 

each class in a 2-dimensional, 2-class classification problem. The margin is the 
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distance between the line and the nearest point classified one way or the other. 

Many lines can be used to separate the points, but the goal is to find the line with 

the greatest margin. Support vectors are the points closest to the separating line 

(Muhammad et al. 2019). A suitable solution to the categorization problem in 

practise may include the use of multiple planes. We can see that a few data points 

are isolated in one region because a collection of planes divides the space of all 

points into parts (Figure 3.1). This is yet another method for identifying outliers.

 

Figure 3.1. Illustration of the various hyperplane that could be selected to divide 

two groups of data points into distinct categories (Gandhi, 2018). 

 

3.7.5. Categorical boosting (CatBoost). 

The recently developed method of machine learning known as Categorical Boosting, 

also known by its abbreviation CatBoost, is built from the terms Category and 

Boosting. It handles categorical characteristics or predictors without the need for 

separate encoding of categorical data, which is commonly needed by other machine 

learning approaches as part of the pre-processing stage. This is where the term "Cat" 

comes from, as it refers to the fact that it handles categorical characteristics or 
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predictors. The term "Boost" is a reference to its functionality, which is based on the 

gradient boosting technique that was covered in the section 3.7.8 below (Ghori et 

al. 2019) 

3.7.6. Light Gradient Boosting 

The Light Gradient Boosting model (LGBM) is an extremely effective gradient 

boosting algorithm, which excludes a significant portion of the data instances that 

have minor gradients when calculating the amount of information gained. This 

algorithm is like the conventional Gradient Boosting Decision Trees (GBDT) machine-

learning models with almost the same efficiency as, but it is significantly quicker 

throughout the training phase (Ke et al. 2017). 

 

3.7.7. Extreme Gradient Boosting 

As an ensemble machine learning technique, gradient boosting can be applied to 

problems of predictive modelling in both classification and regression. The 

ensembles are constructed with the help of decision tree models. Individual trees 

are then added to the ensemble and adjusted to compensate for the errors in 

prediction made by earlier models. This is an illustration of a machine learning 

model that uses a boosting ensemble. When compared to other Gradient Boosting 

implementations, extreme gradient boost stands out because it uses a more 

regularised model formalisation to control over-fitting, leading to improved 

performance and a reduction in overfitting. according to (Chen and Guestrin 2016). 

 

3.7.8. Gradient Boosting (GB). 

For both regression and classification tasks, the machine learning technique known 

as "gradient boosting" can generate an ensemble of low-quality prediction models. 

This method builds a model incrementally and makes it more generic by allowing 

optimization of any loss function that can be differentiated. To put it simply, 

gradient boosting is an iterative process that combines multiple weak learners into 

a single robust one. Each additional poor learner prompts a re-fit of the model to 

generate a more precise prediction of the response variable. As a group, the new 

weak learners correlate most strongly with the negative gradient of the loss 
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function. Gradient boosting's goal is to strengthen prediction by combining several 

weak prediction models. 

3.7.9. Logistic regression. 

Despite its name, logistic regression is a classification model rather than a regression 

model. For binary and linear classification problems, logistic regression is a simpler 

and more efficient method. It is a classification model that is simple to implement 

and delivers excellent results with linearly separable classes (Subasi 2021). It is a 

widely used classification method in industry and it uses the same theory as linear 

regression; however, it is a probabilistic approach used for solving binary or 

multiclass issues by employing a logistic function (Masapanta 2021). 

 

3.8. Model Evaluation 

It is essential to make use of assessment metrics to determine whether a model was 

successful after it was developed. In a problem involving pattern recognition or 

classification, each individual item in the overall population has both a real label 

and a predicted label associated with it. Since both the actual label and the 

predicted label have the potential to be either positive or negative, there are a total 

of four possible outcomes that can take place because of the actual label and the 

predicted label. To begin, what is known as a true positive prediction is when both 

the expected labels and the actual labels have a positive value (TP). Second, a true 

negative prediction is what we call the situation when both the anticipated labels 

and the actual labels are negative (TN). 

Third, a false positive prediction (FP) takes place when the actual label is negative, 

but the anticipated label is positive. The fourth type of prediction is known as a 

false negative (FP), which takes place when the expected label is negative, but the 

actual label is positive (Zhou 2020). True positive and true negative predictions are 

valid because the anticipated values correspond to the actual values (Figure 3.2).  

On the other hand, predictions that are false positive or false negative could be false 

predictions because the values that were anticipated for them do not match the 

values that occur. 
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Figure 3. 2. Illustration of predicted values and actual values (Chris, 2019). 

 

The percentage of correct predictions made across all the samples determines a 

measurement known as accuracy. Figure 3.3 provides a visual representation of some 

common metrics, including precision, recall, and specificity. The term "precision," 

which is also known as "positive predictive value," refers to the percentage of 

accurate positive predictions made across all the selected elements (positive 

predictions). The proportion of accurate predictions across all relevant factors is 

referred to as recall, which is also known as sensitivity or the true positive rate. The 

genuine negative rate, which is also referred to as specificity, indicates the 

percentage of non-relevant factors that result in accurate negative predictions. 
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Figure 3. 3. Illustration of recall, precision, and specificity (Tran, 2016). 

 

In addition, the F1 score is a measurement that takes into consideration both the 

accuracy and the recall (Zhou 2020). It is the harmonic average of the accuracy and 

recall scores. The equations for calculating the parameters are shown down below. 

Accuracy= (𝑇𝑃+𝑇𝑁)/(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 )…………………………………..3.1 

Precision= 𝑇𝑃/(𝑇𝑃+𝐹𝑃)…………………………………………………………….3.2 

Recall= 𝑇𝑃/(𝑇𝑃+𝐹𝑁)………………………………………………………………..3.3 

 F1=2 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 – 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)………………………..3.4 
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CHAPTER FOUR 

RESULTS 

4.1. Exploratory Data Analysis 

4.1.1. Descriptive statistics 

Exploration of the data revealed that it contains several glaring inaccuracies; for 

instance, the maximum value of GR is 1076, which is significantly higher than what 

is typical for any lithology. For sandstone, shale, and carbonate, the value of gamma 

ray can range anywhere from 0 to 150, except for organic rich shales and lithology 

that contains radioactive minerals like K-feldspar, mica, and zircon. This information 

comes from geology. The descriptive statistics presented in table 4.1, as well as the 

histogram and boxplot presented in figure 4.1, make it abundantly clear that the GR 

data are skewed, which indicates that they include outliers. 

According to Table 4.1, the median value of RMED was 1.44, while the mean was 

4.98 due to the influence of extreme values. The maximum value of RMED was 1988, 

and the lowest value was -0.00842. Boxplots and the histogram can both be used to 

identify the data set's extreme values, also known as outliers. 

Table 3.1: Descriptive statistics of the raw data. 

 

 

 

The outliers in Gamma ray were removed and replaced with a median value, which 

makes the Gamma ray log to become a normal distribution as shown in figure 4.2 
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Figure 4.1 Histogram distribution and boxplot of Gamma ray log before outlier 

removal 

 

Figure 4.2 Histogram distribution and boxplot of Gamma ray log after outlier removal 

4.1.2 Pearson correlation 

It is imperative to eliminate the features with high correlation to minimise or reduce 

the amount of overfitting that occurs during the training stage. This assists in 

comprehending the internal structure of the data, which in turn helps reduce the 

dimensionality. Calculating the degree of correlation that exists between each 
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variable in the dataset was accomplished with the Pearson Correlations, and the 

results are depicted in figure 4.3. 

Pearson correlation has a value between +1 and -1, where +1 implies positive 

correlation and -1 denotes negative correlation (Table 4.2). As a result, a stronger 

relationship between variables is indicated when the absolute value of the 

correlation coefficient gets closer to one. 

Table 4.2 Interpretation of correlation coefficient values 

Correlation coefficient value  Interpretation  

±1  Perfect positive/negative 

relationship  

±0.8  Strong positive/negative 

relationship  

±0.6  Moderate strong 

positive/negative relationship  

0  No relationship  
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Figure 4.3 Pearson correlation of the dataset feature 

There is a strong Pearson correlation of 0.93 between RDEP and RMED log, which is 

expected because both are resistivity measurement. Likewise, there is a correlation 

of 0.94 between DTC and DTS log, which is also expected as both are sonic log 

measurement. Strong correlations between variables may lead to performance 

issues for some machine learning models due to the increase in dimensionality that 

results from keeping correlated variables. This is because keeping correlated 

variables results in an increase in the number of dimensions. Additionally, they might 

make the model less scalable and lengthen the amount of time it takes to run. 

It was also observed that there is a strong correlation of 0.83 between NPHI and DTC 

logs. This was to be expected because it is known that compressional waves are 

dependent on the amount of solid minerals present in the rock. This means that the 
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less mineral there is in a rock, the higher the porosity, and consequently, the higher 

the compressional sonic log. 

On the other hand, there is a negative Pearson correlation of 0.84 between RHOB 

and DTC, which is also to be expected if we consider the rock compaction and fluid 

saturation. This is because the higher the compaction, the higher the bulk density 

and the compressional wave velocity, and the lower the compressional slowness. 

 

4.1.3. Density-Neutron cross plot. 

For more complex lithology formations, a combination of density and neutron logs 

can be an invaluable source of porosity information. More accurate estimates of 

porosity can be obtained using the combination than using either tool alone, due to 

the ability to make determine lithology and fluid content. Pure lithologies like 

sandstone, limestone, or dolomite that is filled with oil or water, can be identified 

with the help of the density-neutron cross plot. The cross plot showed that most of 

the lithology are overlapping; only the basement, anhydrite, and halite stood out 

due to their low porosity (Figure 4.4). 
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Figure 4.4. Density-neutron cross plot coloured by lithology 

 

The cross plot shown below reveals that the Rotliegendes Group is primarily 

composed of sandstone, whereas the Nordaland Group is a mixture of shale and 

sandstone/shale lithologies (Figure 4.5).

 

Figure 4.5: Density-neutron cross plot per group coloured by lithology 

4.1.4. Exploring the features 

There is a total of 12 lithofacies represented in the data, with shale, sandy shale, 

and sandstone accounting for more than 70% of the total data. The percentage of 

each lithology's appearance in the training, open test, and hidden test subsets is 

detailed in Table 4.3 below. 
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Figure 4.6: Bar plot showing the lithology presence in the dataset 

Figure 4.6 also provides a more visual representation of the lithology distributions 

across the various data subsets. The different lithologies may be extremely 

important to categorise, but there is a significant class imbalance between them. 

Furthermore, it is critical to remember that many lithology types could be 

categorised as mineral mixtures. Similar readings for petrophysical properties, as 

depicted in figure 4.4, are expected to exist between lithology classes that are 

thought to be related. 

Table 4.3 Lithofacies presence percentages summary. 

Lithology Code Training Open Hidden 

Sandstone 0 14.4 17.6 11.5 

Shaly 1 12.9 12.8 10 

Shale 2 61.6 61.4 58.7 

Marl 3 2.8 2.4 3.6 

Dolomite 4 0.1 0.3 0.2 

Limestone 5 4.8 3.5 3.8 

Chalk 6 0.9 0.5 2.4 

Halite 7 0.7 - 5.3 

Anhydrite 8 0.1 0.1 0.5 

Tuff 9 1.3 0.9 0.8 
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Coal 10 0.3 0.5 0.2 

Basement 11 0.01 - 
 

 

As can be seen in Figure 4.7, the geology of the North Sea is predominately 

characterised by shale, sand, and carbonates, the majority of which were deposited 

during the Jurassic, Cretaceous, and Cenozoic time periods respectively. It is not a 

surprise that shale and sandy shale lithology predominate in the North Sea given the 

history of its geological development, which was first marked by a significant marine 

incursion that stretched the entire length of the North Sea during the transition from 

the Triassic to the Jurassic periods of time. Huge deltaic systems consisting of sand, 

shale, and coal began to emerge in the late Jurassic period in the northern North 

Sea and on the Horda Platform after the maritime incursion had come to an end. 

The most significant Jurassic rifting episode took place in the North Sea region during 

the Late Jurassic and continued into the Early Cretaceous. This event occurred at 

the end of the Jurassic period. Throughout the course of this tectonic episode, 

significant block faulting caused uplift and tilting, which led to the formation of 

significant local topography, complete with erosion and sediment supply. Both the 

most important source rock and the Draupne Formation, which is an important seal 

for hydrocarbon traps in the North Sea region, were produced by the accumulation 

of extensive sequences of shale in anoxic basins. The Draupne Formation serves as 

a crucial seal for hydrocarbon traps in the North Sea region. (NPD, 2015). 
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Figure 4.7: Geology and stratigraphic section of the North Sea (NPD 2015). 

 

The datasets include a wide variety of features that can be used as input data. These 

data elements include twenty types of well log readings in addition to six additional 

metadata characteristics that includes well names, interpretation confidence, 

location, and lithostratigraphic data. However, like many situations that occur in 

the real world, the dataset has missing values for some of its features. These missing 

values could be the result of a wide variety of factors, including economic concerns, 

borehole problems, logging instrument failure, telemetry issues, or simply being 

excluded on purpose. The SGR, DCAL, ROPA, RMIC, MUDWEIGHT, and DTS logs 
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account for most of the missing data in the training set, which are present in only 

13, 22, 25, 27, 28, and 32 wells, respectively as shown in figure 4.8. 

 

 

Figure 4.8: Percentage distribution of features in train, test and hidden dataset. 

 

In addition, the overlapping of the mixed-based lithofacies, such as sandstones and 

shaly-sandstones, could suggest that certain measurements in the dataset 

corresponding to these classes were misread or mislabelled. Alternatively, it could 

be an inherent characteristic of the formations due to the presence of radioactive 

minerals such as k-feldspar, zircon, or mica. In addition, this could be because the 

boundaries between facies are continuous rather than discrete, resulting in the 

feature space containing measurements from various lithology classes being 

superimposed. 
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4.2. Data preparation 

The first and most critical stage in developing a predictive model is data preparation 

(Akinnikawe 2018). This entails data cleaning, outlier removal, and data quality 

control. 

4.2.1. Data cleaning and outlier removal 

Data cleaning is a phase in data processing that involve removing 'NAN' data values 

(Fayyad 1996). "NAN" stands for "Not a number," and it is a particular case in both 

floating-point representations of real numbers and floating-point operations. Even 

while certain machine learning algorithms can deal with "NAN" data, data cleaning 

might potentially mitigate the negative impact of polluted "NAN" data.  

From observations GR, WELL, and FORCE_2020_LITHOFACIES_LITHOLOGY which is 

the target variable has no missing value while, ROPA, RMIC, DTS, DCAL, SGR, RXO 

AND MUDWEIGHT have more than 70% of missing values (Figure 4.9). 

 

Figure 4.9: Bar plot showing the percentage of missing values in each feature of the 

dataset 

 In respect to well, there are 4 wells with more than 60% of missing data (31/6-5 

,33/9-1,35/11-12,31/5-4 S). Well 31/5-4 S has 81% of missing data, and 16 other 

wells have more than 50% missing values. The average missing values per well in the 
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dataset is 41%. All these missing values can either be replaced or dropped before 

modelling, but for this study they were replaced. 

 

Figure 4.10: Bar plot showing the percentage of null values per measurement. 

 

Outliers are unusual points in a dataset. They are points that do not fit into the 

dataset's normal or anticipated statistical distribution and can arise for a variety of 

causes, including sensor and measurement mistakes, inadequate data sampling, and 

unexpected occurrences. 

Outliers may be identified in a dataset using a variety of strategies, some of which 

utilise visual techniques such as scatterplots (e.g. cross plots) and boxplots, while 

others rely on univariate statistical methods (e.g. Z-score) or even unsupervised 

machine learning algorithms. For this study, four methods such as isolation forest, 

standard deviation outlier, local outlier factor and one class support vector machines 

was tested on the train dataset. Comparing the four method of outlier removal with 

the data before outlier was removed using box plot revealed that standard deviation 

filter is the better method out of the four (Figure 4.11). The local outlier factor 

removed 30% of the dataset which is the highest percentage among the four methods 

used (Table 4.4). 
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Figure 4.11: Box plot comparing the distribution of some logs in the data before 

outlier removal and 4 other outlier method. 

 

Table 4.4: Table showing the percentage of points removed for different outlier 

methods 

Outlier methods Points after 

outliers 

removal  

Number of points 

removed 

Percentage of point 

removed 

Local outlier 

Factor     

819358 351153 30 

Isolation Forest   1053460 117051 10 

Standard 

Deviation 

1046472 124039 11 

One-class SVM      1053725 116786 10 
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4.2.2. Well log quality check 

 

The quality of well logs can also be affected by bad hole, which can be caused by 

borehole enlargement, shale swelling, compacted rocks and variations in stresses 

acting on those rocks such as the mud weight. Measurements of the borehole’s 

diameter and profile can be obtained from the Caliper Log, and the bit size curve 

can be used to determine the diameter of the bit used to bore the well (Figure 4.12). 

 

Figure 4.12: Typical caliper responses to various lithologies (Glover 2014) 

To identify the wells affected by bad hole, a log was created by subtracting the 

caliper log from the bit size log. Negative values indicate that the borehole has 

decreased (e.g., shale swelling), whereas positive numbers indicate that the 

borehole has collapsed. From figure 4.13 below well 15/9–15,16/14-1 and 16/1–2, 
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contain bad hole data which might be caused by shale sloughing and enlarged 

borehole (cave in or collapse). 

 

Figure 4.13: Cross plot of neutron density log showing bad hole data 

4.2.3. Data pre-processing 

With exception of few, most machine learning algorithms don’t perform well when 

numerical values have different scales which is what is evident in our dataset. Since 

most of the well log reading are in different scales and several magnitudes in terms 

of range, it is important we bring all variable to same scale and range. This is done 

to improve the performance of the machine learning algorithms. To achieve this, I 

tested four different normalisation methods: MinMax scaler, standardisation, 
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robustscaler, and normalisation. Based on the boxplot in figure 4.14 the MinMax 

scaler method was chosen as the best normalisation method for the data.  

 

 

Figure 4.14: Wireline logs prior to scaling and after application of a min-max scaler, 

standard-scaler, and normalizer. 

On the other hand, the categorical features such as well, group, formation, and 

lithology (target label) were label encoded by using a cat encoding. The missing 

values were replaced by the median values for all the well logs in the dataset. 

Another method of handling missing values is to predict the well log and impute the 

prediction to replace the null values. From feature selection and knowledge of 

geology, GR, NPHI, RHOB, DTS, and DTC logs are some of the most important 

features for identifying lithofacies. DTS, NPHI, RHOB and DTC have 85%,35%,14%, 

and 7% of missing values respectively. The extreme gradient boosting XGB regressor 

was used to train and predict the four logs and this was used to replace the null 

values in the logs. 
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4.3. Feature Engineering 

Regarding feature engineering, we employed several techniques to enhance the 

predictive ability of the models. 

4.3.1. Feature selection 

When it comes to machine learning, one of the most important goals of the feature 

selection process is to choose the input features for the machine learning model in 

a way that considers the relationship between the features and the model output. 

Feature selection can improve model performance with a lower error rate, while 

also improving model generalisation and avoiding the problem of overfitting. To 

select the best characteristics, the K-best, Logistic regression, and variance methods 

were utilised. The RDEP, GR, NPHI, DTC, and RSHA features were chosen as the top 

five by each of the research approaches. For K-best and logistic regression, the least 

important five features are DRHO, ROP, SP, PEF, and RMED. For the variance 

method, the least important five features are X LOC, ROP, SP, PEF, and RMED (Figure 

4.15 and 4.16). 

 

Figure 4.15: Bar chart of the distribution of K best feature importance 
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Figure 4.16: Bar chart of the distribution of K best feature importance 

 

4.3.2. Feature extraction 

In addition to the 29 features that were provided, four of which were imputed and 

improved with the help of machine learning, seven additional features were 

designed and included in the original datasets so that they could be used during the 

training, validation, and prediction stages. 

1. Shale volume calculation: the shale volume was estimated from GR log using 

the equation below. 

𝑉𝑆𝐻_𝐺𝑅=𝐺𝑅−𝐺𝑅_𝑚𝑎/𝐺𝑅_𝑆𝐻−𝐺𝑅_𝑚𝑎 ………………………………..  4.1 

2. Porosity: is a measurement that indicates how much fluid a rock can hold. 

When determining a rock's porosity, the pore volume of the rock is divided by 

the rock's bulk volume (Tiab and Donaldson 1996). The term "total porosity" 

refers to the proportion of a rock's total pore space to the total volume of the 

rock itself. Neutron, density, and sonic logs are used in the calculation to 

arrive at the total porosity. The effective porosity of a material is calculated 

by taking the total porosity and subtracting the proportion of the pore space 

that is taken up by shale or clay (Crain 2019). The porosity can be determined 

by using the equation that is provided below. 
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∅total=𝜌𝑚𝑎+𝜌𝐵/𝜌𝑚𝑎+𝜌𝑓 ……………………………………………………4.2 

∅𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒=∅𝑡×(1−𝑣𝑠ℎ) ………………………………………………………4.3 

3. Bulk modulus(K) 

4. Shear modulus(G) 

5. P-wave impedance (PI) 

6. S-wave impedance (SI) 

 

4.4. Baseline Model. 

There were nine baseline ML models that were designed for this study to evaluate 

which model best classifies the lithology. A cross-validation methodology was 

applied to ten stratified K-Folds taken from the training set, each of which contained 

a sample of 100,000 observations. This method takes the train dataset and divides 

it into ten subsets, then iterates using nine folds for training and one fold for testing. 

It also ensures that each data subset has the same lithology as the original training 

set, which helps to generalise the performance and prevents bias toward the 

lithology that is most common. Given that each model was trained and validated 

using only the training data without any attempt to regularise their learning process, 

these results may be susceptible to overfitting. This is because each model was 

trained and validated using only the training data. 

Four different scenarios based on data pre-processing were also tested on each 

model to determine which type of data pre-processing improves the model 

performance. 

The first scenario is the dataset imputed with median values, in this case the Random 

Forest classifier performed best with 91.4% accuracy, and support vector classifier 

is the least with 47.6% accuracy. 

The second scenario is the dataset imputed with predicted well logs for DTC, DTS, 

RHOB and NPHI while other null values were imputed with the median value, in this 

case the Random Forest classifier performed best with 91.3% accuracy, and support 

vector classifier is the least with 48.8% accuracy. There is no improvement with 

random forest, but there is a slight improvement with the support vector and Logistic 

regression.   
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The third scenario is the dataset with additional extracted feature such as PHIT, 

PHIE, SI, PI, and so on, while other null values were imputed with the median value, 

in this case the Random Forest classifier performed best with 91.2% accuracy, and 

support vector classifier is the least with 47.6% accuracy. There is a slight 

improvement of 2% and 17% with KNN model when comparing scenario 1 and 3 and 

scenario 1 and 2 respectively. On the other hand, there is little or no improvement 

for other models.  

The fourth scenario is the dataset with outliers removed by SVM method, while other 

null values were imputed with the median value, in this case the Random Forest 

classifier performed best with 91.2% accuracy, and support vector classifier is the 

least with 47.4% accuracy. Overall, removing the outliers did not improve the 

performance of any of the model, instead the performance reduced (Table 4.5). 

The fifth scenario is the dataset with data augmentation, comparing this to the base 

model, only the logistic model accuracy increased by 0.5%, the model accuracy 

however decreased in decision tree, RF, XGB, CatBoost, and KNN. 

Table 4.5: Comparing different scenario and model for 100,000 sample of the data. 

Model Scenario 1: 

Base Model 

with 

median 

imputation 

Scenario 2: 

Model with 

predicted 

missing log 

Scenario 3: 

Model with 

new features 

Scenario 4: 

Model with 

SVM filter 

Scenario 5: 

Model with 

data 

augmentation 

Logistic 

Regression 

0.478 0.505 0.491 0.475 0.483 

 

Decision 

Trees 

Classifier 

0.864 0.865 0.864 0.862 0.851 

 

Random 

Forest 

Classifier 

0.914 0.913 0.912 0.912 0.911 

 

XGB 

Classifier 

0.897 0.896 0.896 0.894 0.894 
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CatBoost 0.891 0.891 0.89 0.888 0.884 

 

Gradient 

Boosting 

Classifier 

0.836 0.834 0.834 0.831 0.836 

 

LGBM 0.785 0.784 0.787 0.771 0.786 

 

K-Nearest 

Neighbor 

Classifier 

0.88 0.748 0.896 nan 0.867 

 

Support 

Vector 

Machines 

0.476 0.488 0.476 0.474 0.476 

 

 

Some of this model will be further examined, modified, and tested on the open and 

hidden dataset, hyperparameter tuning will also be performed to select the best 

parameter for each model. 

4.5. Random Forest 

4.5.1 Random Forest base model 

A base model was designed and trained to serve as a basis of comparison with 

subsequent model, to determine if creation of new features, hyperparameter 

tuning, data augmentation will improve the performance of the model. 

With 100,000 sample of the dataset, an accuracy of 91% was achieved by the Random 

Forest base model after it was trained and validated on 10 different stratified k-

folds as discussed earlier in section 4.4. To investigate further, RF base model was 

trained on the entire train dataset, and this achieved an accuracy of 100%, 78% and 

80% on the train set, open test set and hidden set respectively (Table 4.6).  
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Table 4.6: Reports for the training, open, and hidden datasets generated by the 

Random Forest Classification algorithm. 

 

 

4.5.2. Random forest with hyperparameter 

A hyper-parameter optimization process was carried out based on a grid parameter 

search technique. The parameter values that were used can be found in table 4.7 

below. The hyper-parameter grid search was carried out on a 50,000 sample of the 

dataset to save time, while cross validating the training with 10 stratified folds to 

prevent overfitting the training data. The optimal hyper-parameters are provided 

below, and best score of 90% was achieved during the tuning. 

Table 4.7: Hyperparameter values for Random forest. 

Hyper parameter Values 

Best 

value 

n_estimators 

100, 

150, 200 

150 

max_depth 10,15,20 20 

criterion 

gini, 

entropy 

entropy 

max_features 

auto, 

sqrt 

auto 

Lithology Precision Recall F1-score PrecisionRecall F1-score PrecisionRecall F1-score

Sandstone (0) 1 1 1 0.8 0.83 0.81 0.77 0.77 0.77

Sandstone/Shale (1) 1 1 1 0.83 0.93 0.87 0.85 0.96 0.9

Shale (2) 1 1 1 0.5 0.27 0.35 0.55 0.25 0.34

Marl (3) 1 1 1 0.43 0.55 0.48 0.59 0.63 0.61

Dolomite (4) 1 1 1 0.71 0.02 0.03 0.62 0.47 0.53

Limestone (5) 1 1 1 0 0 0 0 0 0

Chalk (6) 1 1 1 0.46 0.08 0.13 0.4 0.23 0.29

Halite (7) 1 1 1 0 0 0 0.82 0.6 0.69

Anhydrite (8) 1 1 1 _ _ _ 0.99 0.99 0.99

Tuff (9) 1 1 1 0.75 0.51 0.6 0.88 0.62 0.73

Coal (10) 1 1 1 _ _ _ _ _ _

Basement (11) 1 1 1 0.75 0.49 0.6 0.7 0.46 0.55

Penalty matrix score

accuracy

RMSE

Weighted avg 1 1 1 0.75 0.78 0.75 0.77 0.8 0.78

-0.553

0.8

1.323

Hidden set

-2.99

1

0.0018

Training set

-0.583

0.78

1.311

Open set
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min_samples_leaf 1,2,4 1 

 

After training a new model with the best hyper-parameters, the final model achieved 

accuracies of 98%, 79%, and 80%, respectively, on the train, open, and hidden set. 

Table 4.8 provides a visual representation of the detailed classification reports that 

are broken down by each class of lithology. 

Table 4.8: Reports for the training, open, and hidden datasets generated by the 

Random Forest Classification algorithm with hyperparameter. 

 

 

4.5.3. Random forest with data augmentation 

Furthermore, a new model was trained with augmented data. This model achieved 

an accuracy of 100% on the training set, 78% on the open set, and 80% on the hidden 

set. Table 4.9 provides a visual representation of the detailed classification reports 

by lithology class. There is no significant improvement with the performance of 

model compared to the model without data augmentation. 

 

 

 

 

Lithology Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Sandstone (0) 0.99 0.97 0.98 0.81 0.82 0.82 0.78 0.78 0.78

Sandstone/Shale (1) 0.98 1 0.99 0.83 0.95 0.88 0.85 0.95 0.9

Shale (2) 0.97 0.94 0.96 0.61 0.29 0.4 0.59 0.26 0.36

Marl (3) 1 0.91 0.95 0.41 0.57 0.47 0.59 0.61 0.6

Dolomite (4) 1 1 1 0 0 0 0.62 0.47 0.53

Limestone (5) 1 0.66 0.8 0 0 0 0 0 0

Chalk (6) 0.99 0.98 0.99 0.62 0.07 0.13 0.34 0.27 0.3

Halite (7) 1 1 1 0 0 0 0.73 0.62 0.67

Anhydrite (8) 1 1 1 _ _ _ 0.99 0.99 0.99

Tuff (9) 1 0.98 0.99 0.77 0.52 0.62 0.88 0.65 0.75

Coal (10) 1 1 1 _ _ _ _ _ _

Basement (11) 0.99 0.99 0.99 0.72 0.48 0.58 0.66 0.55 0.6

Penalty matrix score

accuracy

RMSE

Weighted avg 0.98 0.98 0.98 0.77 0.79 0.77 0.78 0.8 0.78

-0.559

0.8

1.361

-0.0501

0.98

0.293

-0.551

0.79

1.304

Training set Open set Hidden set
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Table 4.9. Reports for the training, open, and hidden datasets from the Random 

Forest Classification algorithm, completed with data augmentation. 

 

 

 

4.5.4. Random forest with data augmentation and hyperparameters 

Furthermore, a new model was trained with augmented data and hyperparameters. 

This model achieved an accuracy of 99% on the training set, 79% on the open set, 

and 80% on the hidden set. Table 4.10 provides a visual representation of the 

detailed classification reports by lithology class. There is no significant improvement 

with the performance of model compared to the model without data augmentation. 

 

 

 

 

 

 

 

Lithology Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Sandstone (0) 1 1 1 0.79 0.82 0.81 0.77 0.78 0.78

Sandstone/Shale (1) 1 1 1 0.83 0.93 0.88 0.85 0.97 0.91

Shale (2) 1 1 1 0.54 0.31 0.39 0.57 0.26 0.36

Marl (3) 1 1 1 0.43 0.56 0.49 0.61 0.62 0.62

Dolomite (4) 1 1 1 0.75 0.1 0.18 0.62 0.47 0.54

Limestone (5) 1 1 1 0 0 0 0 0 0

Chalk (6) 1 1 1 0.33 0.05 0.09 0.44 0.26 0.33

Halite (7) 1 1 1 0 0 0 0.76 0.64 0.7

Anhydrite (8) 1 1 1 _ _ _ 0.99 0.99 0.99

Tuff (9) 1 1 1 0.79 0.52 0.62 0.88 0.63 0.73

Coal (10) 1 1 1 _ _ _ _ _ _

Basement (11) 1 1 1 0.72 0.49 0.59 0.7 0.57 0.63

Penalty matrix score

accuracy

RMSE

Weighted avg 1 1 1 0.76 0.78 0.76 0.77 0.8 0.78

0.009 1.323 1.294

Hidden set

-1.708 -0.578 -0.535

1 0.78 0.8

Training set Open set
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Table 4.10. Reports for the training, open, and hidden datasets from the Random 

Forest Classification algorithm, completed with hyperparameter and data 

augmentation. 

 

 

 

4.5.5. Random forest with feature engineering 

To further investigate if the model performance can be boosted, a new model was 

trained with hyper-parameters and 7 additional created features. This model 

achieved an accuracy of 98% on the training set, 77% on the open test, and 80% on 

the hidden test. Table 4.11 provides a visual representation of the detailed 

classification reports by lithology class. There is no significant improvement with the 

overall performance of the model compared to the model without feature 

engineering. 

 

 

 

 

Lithology Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Sandstone (0) 1 0.98 0.99 0.78 0.82 0.8 0.77 0.78 0.77

Sandstone/Shale (1) 0.98 1 0.99 0.82 0.94 0.88 0.85 0.96 0.9

Shale (2) 0.98 0.95 0.97 0.6 0.28 0.38 0.58 0.27 0.37

Marl (3) 1 0.93 0.96 0.47 0.57 0.51 0.62 0.61 0.62

Dolomite (4) 1 1 1 0 0 0 0.62 0.47 0.53

Limestone (5) 1 0.75 0.86 0 0 0 0 0 0

Chalk (6) 1 0.99 0.99 0.42 0.05 0.09 0.34 0.27 0.3

Halite (7) 1 1 1 0 0 0 0.75 0.62 0.68

Anhydrite (8) 1 1 1 _ _ _ 0.99 0.99 0.99

Tuff (9) 1 0.99 1 0.83 0.52 0.64 0.88 0.66 0.75

Coal (10) 1 1 1 _ _ _ _ _ _

Basement (11) 1 0.99 0.99 0.72 0.47 0.57 0.69 0.57 0.62

Penalty matrix score

accuracy

RMSE

Weighted avg 0.99 0.99 0.98 0.76 0.79 0.76 0.78 0.8 0.78

1.341

Hidden set

-0.038 -0.565 -0.557

0.99 0.79 0.8

Training set Open set

0.243 1.322
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Table 4.11: Reports for the training, open, and hidden datasets from the Random 

Forest Classification algorithm, completed with hyperparameter and feature 

engineering. 

 

 

4.6. Extreme Gradient boosting (XGB) model 

4.6.1. Extreme Gradient boosting (XGB) base model 

With 100,000 sample of the dataset, an accuracy of 89.7% was achieved by the XGB 

base model after it was trained and validated on 10 different stratified k-folds as 

discussed earlier in section 4.4. 

The XGB base model on the entire train set was able to achieve an accuracy of 82% 

on the train set, 76% in the open set and 78% in the hidden set, respectively (Table 

4.12.). However, because XGB has performed exceptionally well in several machine 

learning competitions for classification and regression tasks, I believed that careful 

selection of appropriate hyper-parameters might be able to improve its overall 

performance. 

 

 

Lithology Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Sandstone (0) 1 1 1 0 0 0 0.74 0.82 0.77

Sandstone/Shale (1) 1 1 1 _ _ _ _ _ _

Shale (2) 1 1 1 0 0 0 0.64 0.47 0.54

Marl (3) 1 0.98 0.99 0.84 0.54 0.66 0.87 0.66 0.75

Dolomite (4) 1 0.75 0.86 0 0 0 0 0 0

Limestone (5) 1 1 1 0 0 0 0.99 0.99 0.99

Chalk (6) 1 0.92 0.96 0.52 0.48 0.5 0.6 0.64 0.62

Halite (7) 0.99 0.98 0.99 0.39 0.03 0.06 0.34 0.26 0.29

Anhydrite (8) 0.99 0.98 0.99 0.89 0.7 0.79 0.76 0.78 0.77

Tuff (9) 0.98 0.95 0.96 0.64 0.16 0.26 0.57 0.28 0.38

Coal (10) 0.98 1 0.99 0.77 0.99 0.86 0.86 0.95 0.9

Basement (11) 0.99 0.99 0.99 0.75 0.34 0.47 0.65 0.59 0.62

Penalty matrix score

accuracy

RMSE

Weighted avg 0.98 0.98 0.98 0.75 0.77 0.73 0.78 0.8 0.79

-0.056

0.316

Training set Open set Hidden set

-0.747

0.77

-0.681

0.8

1.0751.07

0.98
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Table 4.12: XGB base model Classification reports for the training, open, and hidden 

datasets. 

 

 

4.6.2. Extreme Gradient boosting (XGB) with hyperparameters 

Because the hyperparameter tuning for XGB model was expensive and time 

consuming, I was not able to perform a Gridsearch to select the best parameters. 

However, I used a set of hyperparameters from a previous work (Masapanta 2021) as 

shown in table 4.13. 

Table 4.13: Selected hyperparameters for XGB model. 

Hyper parameter 

Selected 

value 

n_estimators 1000 

max_depth 4 

booster gbtree 

objective multi:softprob 

learning_rate 0.075 

random_state 42 

subsample 1 

Lithology Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Sandstone (0) 0.78 0.72 0.74 0.74 0.78 0.76 0.75 0.56 0.64

Sandstone/Shale (1) 0.83 0.97 0.89 0.81 0.93 0.87 0.83 0.97 0.9

Shale (2) 0.76 0.35 0.48 0.42 0.24 0.31 0.49 0.27 0.34

Marl (3) 0.84 0.58 0.69 0.42 0.22 0.29 0.52 0.51 0.51

Dolomite (4) 0.9 0.9 0.9 0 0 0 0.56 0.58 0.57

Limestone (5) 0.79 0.19 0.3 0 0 0 0.29 0.49 0.37

Chalk (6) 0.79 0.55 0.65 0.38 0.07 0.12 0.48 0.25 0.33

Halite (7) 0.93 0.89 0.91 0.96 0.61 0.75 0.94 0.35 0.51

Anhydrite (8) 0.99 1 0.99 _ _ _ 0.99 0.96 0.97

Tuff (9) 0.87 0.41 0.56 0.83 0.43 0.57 0.85 0.48 0.61

Coal (10) 1 0.83 0.91 _ _ _ _ _ _

Basement (11) 0.75 0.78 0.76 0.7 0.72 0.71 0.6 0.51 0.55

Penalty matrix score

accuracy

RMSE

Weighted avg 0.81 0.82 0.8 0.72 0.76 0.73 0.75 0.78 0.75

0.78

Training set Open set Hidden set

-0.4742

0.82

1.196

-0.614

1.388

-0.636

0.76

1.339
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colsample_bytree 1 

verbose 2020 

reg_lambda 1500 

 

 

After training a new model with the selected hyper-parameters above, the final 

model achieved accuracies of 86%, 80%, and 81%, respectively, on the train set, open 

set, and hidden set. Table 4.14 provides a visual representation of the detailed 

classification reports that are broken down by each class of lithology. Compared to 

the base model, there is 4% and 3% increase in the open and hidden set accuracy 

when hyperparameters was used. 

 

Table 4.14. Reports for the training, open, and hidden datasets from the XGB 

Classification algorithm completed with hyperparameter. 

 

 

4.6.3. Extreme Gradient boosting (XGB) with data augmentation 

To boost the classification accuracy, a new model was trained with data 

augmentation. This model achieved an accuracy of 93% on the training set, 76% on 

the open set, and 79% on the hidden set. Table 4.15 provides a visual representation 

of the detailed classification reports by lithology class. Compared to the base model, 

Lithology Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Sandstone (0) 0.83 0.8 0.82 0.84 0.81 0.82 0.74 0.78 0.76

Sandstone/Shale (1) 0.88 0.97 0.92 0.83 0.96 0.89 0.87 0.94 0.9

Shale (2) 0.77 0.57 0.65 0.6 0.29 0.39 0.55 0.36 0.43

Marl (3) 0.84 0.65 0.73 0.47 0.52 0.5 0.71 0.67 0.69

Dolomite (4) 0.89 0.9 0.9 0 0 0 0.8 0.79 0.8

Limestone (5) 0.63 0.12 0.2 0 0 0 0 0 0

Chalk (6) 0.8 0.66 0.73 0.64 0.15 0.25 0.29 0.24 0.26

Halite (7) 0.91 0.88 0.9 0.97 0.29 0.44 0.82 0.5 0.62

Anhydrite (8) 0.99 0.99 0.99 _ _ _ 0.99 0.99 0.99

Tuff (9) 0.82 0.53 0.65 0.79 0.58 0.67 0.83 0.67 0.74

Coal (10) 0.98 0.44 0.6 _ _ _ _ _ _

Basement (11) 0.8 0.85 0.83 0.72 0.65 0.68 0.62 0.76 0.68

Penalty matrix score

accuracy

RMSE

Weighted avg 0.86 0.86 0.86 0.77 0.8 0.77 0.79 0.81 0.8

0.86

1.069 1.374

0.81

-0.534

0.8

1.249

Training set Open set Hidden set

-0.54-0.369
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there is a 11% accuracy increase in the train set, while in the open and hidden set 

there is no significant improvement with the performance of model. 

 

Table 4.15: Reports for the training, open, and hidden datasets from the XGB 

Classification algorithm completed with data augmentation. 

 

 

 

4.6.4. Extreme Gradient boosting (XGB) with data augmentation and 

hyperparameters 

To boost classification accuracy, a new model was trained with selected hyper-

parameters and data augmentation. This model achieved an accuracy of 89% on the 

training set, 79% on the open set, and 80% on the hidden set. Table 4.16 provides a 

visual representation of the detailed classification reports by lithology class. 

Comparing this model to the model with data augmentation and no hyperparameter, 

it can be observed that there is no improvement in the accuracy of the train set, 

while there is a 3% and 1% increase in accuracy in the open and hidden set 

respectively.  

 

 

 

Lithology Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Sandstone (0) 0.9 0.9 0.9 0.8 0.8 0.8 0.71 0.76 0.73

Sandstone/Shale (1) 0.94 0.98 0.96 0.84 0.88 0.86 0.89 0.91 0.9

Shale (2) 0.86 0.76 0.81 0.42 0.35 0.38 0.54 0.46 0.5

Marl (3) 0.9 0.79 0.85 0.45 0.6 0.51 0.61 0.62 0.62

Dolomite (4) 0.99 0.99 0.99 0 0 0 0.63 0.48 0.54

Limestone (5) 0.94 0.78 0.85 0 0 0 0.4 0.15 0.21

Chalk (6) 0.91 0.88 0.89 0.12 0.07 0.09 0.28 0.28 0.28

Halite (7) 1 1 1 1 0.22 0.36 0.77 0.74 0.75

Anhydrite (8) 1 1 1 _ _ _ 0.98 1 0.99

Tuff (9) 0.96 0.95 0.96 0.76 0.6 0.67 0.7 0.63 0.66

Coal (10) 1 1 1 _ _ _ _ _ _

Basement (11) 0.95 0.98 0.96 0.76 0.61 0.68 0.61 0.54 0.57

Penalty matrix score

accuracy

RMSE

Weighted avg 0.92 0.93 0.92 0.74 0.76 0.75 0.79 0.79 0.79

Training set Open set Hidden set

-0.587

0.79

1.431

-0.648

0.76

1.383

0.93

-0.199

0.614
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Table 4.16: Reports for the training, open, and hidden datasets from the XGB 

Classification algorithm completed with augmentation and hyperparameter. 

 

 

 

4.6.5. Extreme Gradient boosting (XGB) with feature engineering 

To further investigate the possibility of improving the model performance, a new 

model was trained with the selected hyper-parameters and 7 additional created 

features. This model achieved an accuracy of 88% on the training set, 80% on the 

open set, and 80% on the hidden set. Table 4.17 provides a visual representation of 

the detailed classification reports by lithology class. There is no significant 

improvement with the performance of model compared to the model without 

feature engineering. 

 

 

 

 

 

Lithology Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Sandstone (0) 0.87 0.85 0.86 0.85 0.8 0.82 0.74 0.83 0.78

Sandstone/Shale (1) 0.92 0.97 0.94 0.83 0.94 0.88 0.88 0.93 0.9

Shale (2) 0.81 0.67 0.74 0.54 0.35 0.42 0.54 0.33 0.41

Marl (3) 0.85 0.72 0.78 0.48 0.6 0.53 0.64 0.64 0.64

Dolomite (4) 0.94 0.94 0.94 0.96 0.07 0.14 0.68 0.5 0.58

Limestone (5) 0.72 0.29 0.41 0 0 0 0.05 0.02 0.03

Chalk (6) 0.85 0.78 0.82 0.66 0.14 0.23 0.29 0.29 0.29

Halite (7) 0.95 0.94 0.94 1 0.16 0.28 0.81 0.66 0.73

Anhydrite (8) 1 1 1 _ _ _ 0.99 0.99 0.99

Tuff (9) 0.84 0.75 0.79 0.74 0.67 0.7 0.75 0.73 0.74

Coal (10) 1 0.87 0.93 _ _ _ _ _ _

Basement (11) 0.88 0.93 0.9 0.78 0.65 0.71 0.62 0.65 0.63

Penalty matrix score

accuracy

RMSE

Weighted avg 0.89 0.89 0.89 0.78 0.79 0.78 0.79 0.8 0.79

-0.282

0.89

0.859

Training set Open set Hidden set

-0.543

0.79

1.225

-0.565

0.8

1.407
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Table 4.17: Reports for the training, open, and hidden datasets from the XGB 

Classification algorithm completed with hyperparameter and feature engineering. 

 

 

 

4.7. KNN model 

4.7.1. KNN base model 

The non-parametric K-nearest neighbour base model of 100,000 samples produced 

an accuracy of 88% through cross validation on 10-stratified k-folds. However, 

despite the promising result demonstrated in the 100,000 sample base model, when 

KNN base model was trained on the entire train dataset, it achieved 96%, 57% and 

55% accuracy on train set, open set and hidden set respectively (Table 4.18). To 

investigate the possibility of improving the model performance, a hyper-parameter 

optimization was also carried out.  

 

 

 

 

 

Lithology Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Sandstone (0) 0.92 0.91 0.92 1 0.07 0.13 0.78 0.59 0.67

Sandstone/Shale (1) 0.99 0.8 0.88 _ _ _ _ _ _

Shale (2) 0.92 0.92 0.92 1 0 0 0.74 0.49 0.59

Marl (3) 0.81 0.65 0.72 0.61 0.68 0.64 0.82 0.68 0.74

Dolomite (4) 0.63 0.15 0.24 0 0 0 0.07 0.01 0.02

Limestone (5) 0.99 0.99 0.99 _ _ _ 0.99 0.99 0.99

Chalk (6) 0.85 0.67 0.75 0.5 0.52 0.51 0.62 0.65 0.63

Halite (7) 0.82 0.72 0.77 0.66 0.15 0.25 0.3 0.27 0.29

Anhydrite (8) 0.85 0.83 0.84 0.83 0.81 0.82 0.73 0.81 0.77

Tuff (9) 0.79 0.62 0.69 0.58 0.33 0.42 0.53 0.31 0.39

Coal (10) 0.9 0.97 0.93 0.83 0.95 0.88 0.88 0.93 0.9

Basement (11) 0.84 0.89 0.86 0.74 0.63 0.68 0.61 0.66 0.63

Penalty matrix score

accuracy

RMSE

Weighted avg 0.87 0.88 0.87 0.78 0.8 0.77 0.78 0.8 0.79

-0.414

0.88

0.757

-0.694

0.8

1.079

-0.671

0.8

1.041

Training set Open set Hidden set



59 
 

Table 4.18: KNN base model Classification reports for the training, open, and hidden 

datasets. 

 

 

4.7.2. KNN with hyperparameters 

A hyper-parameter optimization process was carried out based on a grid parameter 

search technique. The parameter values that were used can be found in table 4.19 

below. The hyper-parameter grid search was carried out on a 50,000 sample of the 

dataset while cross validating the training with 10 stratified folds to prevent 

overfitting the training data. The optimal hyper-parameters are provided below, and 

the process achieved a score of 88%. 

 

Table 4.19: Hyperparameter values for KNN model 

Hyper 

parameter Values 

Best value 

n_estimators 1,10,1 1 

leaf_size 20,40,1 20 

weights 

uniform, 

distance 

uniform 

metric 

minkowski, 

chebyshev 

minkowski 

Lithology Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Sandstone (0) 0.95 0.95 0.95 0.53 0.47 0.5 0.48 0.52 0.5

Sandstone/Shale (1) 0.97 0.98 0.98 0.78 0.71 0.75 0.77 0.63 0.69

Shale (2) 0.92 0.91 0.92 0.2 0.21 0.21 0.17 0.27 0.21

Marl (3) 0.95 0.86 0.9 0.13 0.4 0.2 0.37 0.56 0.45

Dolomite (4) 0.97 0.97 0.97 0 0 0 0.45 0.52 0.48

Limestone (5) 0.88 0.63 0.73 0 0 0 0 0 0

Chalk (6) 0.95 0.93 0.94 0.24 0.12 0.16 0.36 0.26 0.3

Halite (7) 0.96 0.93 0.95 0 0 0 0.71 0.58 0.64

Anhydrite (8) 0.99 1 0.99 _ _ _ 0.99 0.65 0.78

Tuff (9) 0.92 0.8 0.85 0.55 0.38 0.45 0.77 0.17 0.28

Coal (10) 0.98 1 0.99 _ _ _ _ _ _

Basement (11) 0.95 0.97 0.96 0.13 0.25 0.17 0.03 0.19 0.05

Penalty matrix score

accuracy

RMSE

Weighted avg 0.96 0.96 0.96 0.61 0.57 0.59 0.63 0.55 0.58

Training set Open set

-0.108

0.96

0.56

-1.137

0.57

2.005

Hidden set

2.806

0.55

-1.223
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After training a new model with the most appropriate hyper-parameters, the final 

model achieved accuracies of 100%, 61%, and 56%, respectively, on the training, 

open test, and hidden test. Table 4.20 provides a visual representation of the 

detailed classification reports that are broken down by each class of lithology. 

Comparing this model to the base model in section 4.7.1,there is 4%,4% and 1% in 

the train, open and hidden dataset respectively. 

Table 4.20: KNN Classification reports for the training, open, and hidden datasets 

with hyperparameters. 

 

4.7.3. KNN with augmented data and hyperparameters. 

To boost classification accuracy, a new model was trained with selected hyper-

parameters and augmented data. This model achieved an accuracy of 95% on the 

training set, 57% on the open set, and 59% on the hidden set. Table 4.21 provides a 

visual representation of the detailed classification reports by lithology class. 

Comparing this model to the model with hyperparameter in section 4.7.2., it can be 

observed that there is a 5% and 4% decrease in accuracy of the train and open set 

respectively, while there is a 3% increase in the accuracy of the hidden set.  

 

 

Lithology Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Sandstone (0) 1 1 1 0.57 0.59 0.58 0.53 0.54 0.53

Sandstone/Shale (1) 1 1 1 0.81 0.73 0.77 0.77 0.6 0.68

Shale (2) 1 1 1 0.23 0.25 0.24 0.21 0.37 0.27

Marl (3) 1 1 1 0.17 0.46 0.25 0.35 0.57 0.43

Dolomite (4) 1 1 1 0 0 0 0.42 0.46 0.44

Limestone (5) 1 1 1 0.02 0.01 0.01 0 0 0

Chalk (6) 1 1 1 0.29 0.15 0.2 0.38 0.29 0.33

Halite (7) 1 1 1 0.96 0.54 0.69 0.55 0.62 0.59

Anhydrite (8) 1 1 1 0 0 0 0.98 0.7 0.82

Tuff (9) 1 1 1 0.58 0.4 0.47 0.57 0.16 0.25

Coal (10) 1 1 1 _ _ _ _ _ _

Basement (11) 1 1 1 0.2 0.14 0.16 0.1 0.47 0.17

Penalty matrix score

accuracy

RMSE

Weighted avg 1 1 1 0.64 0.61 0.62 0.64 0.56 0.59

0.56

2.474

-1.036

0.61

1.722

Training set Open set

0

1

0

Hidden set

-1.186
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Table 4.21: KNN Classification reports for the training, open, and hidden datasets 

on augmented data with hyperparameters. 

 

 

4.7.4. KNN model with feature engineering 

To further investigate the possibility of improving the model performance, a new 

model was trained with hyper-parameters and 7 additional created features. This 

model achieved an accuracy of 100% on the train set, 60% on the open set, and 55% 

on the hidden set. Table 4.22 provides a visual representation of the detailed 

classification reports by lithology class. Comparing this to the base model, there is 

an increase of 4% and 3% on the train and open set respectively, while there is no 

improvement in the hidden set. 

 

 

 

 

 

 

Lithology Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Sandstone (0) 0.93 0.93 0.93 0.54 0.46 0.5 0.46 0.54 0.5

Sandstone/Shale (1) 0.96 0.98 0.97 0.75 0.72 0.74 0.76 0.69 0.72

Shale (2) 0.9 0.86 0.88 0.2 0.22 0.21 0.21 0.28 0.24

Marl (3) 0.94 0.83 0.88 0.15 0.35 0.21 0.53 0.53 0.53

Dolomite (4) 0.97 0.96 0.96 0 0 0 0.45 0.52 0.48

Limestone (5) 0.85 0.55 0.67 0.01 0.01 0.01 0 0 0

Chalk (6) 0.94 0.91 0.92 0.27 0.12 0.17 0.33 0.26 0.29

Halite (7) 0.95 0.9 0.93 0 0 0 0.78 0.17 0.28

Anhydrite (8) 0.99 1 0.99 _ _ _ 0.98 0.61 0.75

Tuff (9) 0.93 0.78 0.85 0.58 0.32 0.41 0.49 0.08 0.13

Coal (10) 0.99 0.99 0.99 _ _ _ _ _ _

Basement (11) 0.92 0.95 0.94 0.16 0.31 0.21 0.03 0.2 0.06

Penalty matrix score

accuracy

RMSE

Weighted avg 0.95 0.95 0.95 0.6 0.57 0.58 0.64 0.59 0.61

Training set Open set Hidden set

-0.142

0.95

0.648

-1.104

0.57

1.947 2.824

0.59

-1.139
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Table 4.22 KNN Classification reports for the training, open, and hidden datasets 

with hyperparameters and feature engineering. 

 

 

  

Lithology Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Sandstone (0) 1 1 1 0.92 0.66 0.77 0.3 0.65 0.41

Sandstone/Shale (1) 1 1 1 _ _ _ _ _ _

Shale (2) 1 1 1 0 0 0 0.39 0.41 0.4

Marl (3) 1 1 1 0.6 0.42 0.49 0.67 0.35 0.46

Dolomite (4) 1 1 1 0.01 0 0.01 0 0 0

Limestone (5) 1 1 1 _ _ _ 0.97 0.3 0.46

Chalk (6) 1 1 1 0.19 0.45 0.27 0.32 0.55 0.41

Halite (7) 1 1 1 0.27 0.14 0.19 0.41 0.31 0.35

Anhydrite (8) 1 1 1 0.55 0.56 0.56 0.59 0.49 0.54

Tuff (9) 1 1 1 0.22 0.23 0.22 0.26 0.43 0.32

Coal (10) 1 1 1 0.78 0.74 0.76 0.74 0.62 0.68

Basement (11) 1 1 1 0.25 0.15 0.19 0.1 0.48 0.16

Penalty matrix score 0

accuracy 1

RMSE 0

Weighted avg 1 1 1 0.62 0.6 0.61 0.63 0.55 0.57

Training set Open set Hidden set

-1.35

0.6

1.388

-1.56

0.55

1.965
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CHAPTER FIVE 

DISCUSSION 

In this study, I investigated how accurately machine learning model like RF, SVM, 

Logistic regression, decision tree, KNN, XGB, Light GBM, GB, and CatBoost can be 

able to classify lithology label in well logs. To achieve this, the models were trained 

with or without hyperparameters, with or without feature engineering, and with or 

without augmented data to investigate which model performed best. For the 

100,000-sample data, Random forest performed best, which is consistent with 

Merembayev et al. 2021.  Random Forest, CatBoost, XGB and KNN performed best 

without any form of feature engineering, outlier filter and ML imputation, Logistic 

regression, decision tree and support vector machine performed best when the 

dataset has ML imputation (scenario 2), KNN and LGBM performed best with feature 

engineering. None of the model performed better when augmented data was used 

For deeper study, 3 top models (RF, XGB, KNN) in the first investigation were used 

to train the entire train dataset and evaluated on the open and hidden set. A 

comparison of the model performance for different scenario is shown in table 6.1. 

Table 6.1. Comparison of the train, open and hidden accuracy of Random forest, 

Extreme gradient boosting, and K nearest neighbour. 

 

For random forest trained on the entire train dataset, and evaluated on the open 

dataset, it was observed that on the open set RF performed best at classifying 

sandstone/shale lithology, and it was able to differentiate between sandstone/shale 

and sandstone but misclassified the shale lithology. With feature engineering, the 

model was not able to classify sandstone, shale/sandstone, and shale but coal was 

correctly classified with feature engineering. There was improvement with the 

classification of chalk from 7% to 48%, coal from 0% to 99% and anhydrite from 0% to 

70%.  On the hidden dataset, RF performed best at classifying anhydrite, 

sandstone/shale, and halite. With feature engineering, sandstone accurate 

Train set Open set Hidden set Train set Open set Hidden set Train set Open set Hidden set

Base model 100 78 80 82 76 78 96 57 55

Model with hyperparameters 98 79 80 86 80 81 100 61 56

Model with data augmentation 100 78 80 93 76 79 95 57 59

Model with data augmentation and hyperparameters 99 79 80 89 79 80 _ _ _

Model with feature engineering 98 77 80 88 80 80 100 60 55

Extreme Gradient BoostingRandom Forest K-Nearest Neighbour
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classification improved from 77% to 82%, while sandstone/shale could not be 

classified correctly. The classification of coal also increased from 0% to 95%, and 

limestone from 0% to 99%. There is little or no improvement with the classification 

of all the lithology when Augmented data was used with or without 

hyperparameters. 

Overall, RF model was unable to generalize its performance on unseen objects, and 

it performed quite well with classifying lithology facies that are not similar to each 

other. 

For XGB trained on the entire train dataset and evaluated on the open dataset, it 

was observed that XGB performed well at classifying sandstone/shale lithology, and 

it was able to differentiate between sandstone/shale and sandstone but 

misclassified the shale lithology more. In the open set, XGB model was not able to 

make any accurate classification for dolomite, limestone, anhydrite, and coal, 

whether with hyperparameters, feature engineering, data augmentation or not. 

While on the hidden set, anhydrite was accurately classified (96%), as well as 

sandstone/shale (97%). When trained with hyperparameters, the overall accuracy of 

open and hidden set increased by 4% and 3% respectively. With data augmentation, 

marl lithology accuracy increased from 22% to 60%, and with feature engineering it 

increased to 68% (figure 6.1). XGB also classifies basement better than RF. 

Feature engineering was able to improve the classification of the lithology with 

fewer observation like marl, basement, anhydrite, and coal compared to lithologies 

like shale, sandstone/shale and sandstone that contributes to more than 70% of the 

dataset. XGB model trained with hyperparameter performed better for most of the 

lithology like sandstone, shale, sandstone/shale, marl, tuff, chalk except basement 

and halite. The XGB model could not classify dolomite and limestone in all the 

different scenario, dolomite was misclassified as marl while limestone was 

misclassified as sandstone/shale (figure 6.2). In the hidden set, the base model 

classified sandstone/shale (97%), and anhydrite (99%) correctly, while other 

lithology was averagely classified.  

 Overall, the model performance was better in hidden set compared to the open set 

and this may be because the distribution of the features is more balanced in the 

hidden set. 
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Figure 6.1. Normalised confusion matrix of XGB model with augmented data. 
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Figure 6.2. Normalised confusion matrix of XGB model with augmented data and 

hyperparameter. 

 

Though, KNN model achieved an accuracy of 88% in the 100,000 sample base model, 

its overall performance in the open and hidden set was low. In the open set, KNN 

base model could not classify dolomite, limestone, halite, anhydrite and coal, with 

hyperparameters halite and limestone were moderately and poorly classified 

respectively while dolomite, anhydrite and coal were misclassified. In the hidden 

set, dolomite, halite, and anhydrite were moderately classified 

Base model and model with augmented data with or without hyperparameter 

misclassified coal, but with feature engineering coal was classified with an accuracy 

of 74% and 62% in open and hidden set respectively. 

Shale lithology is generally misclassified in all the model, but feature engineering 

improves the performance of the classification from 27% to 41% in the hidden data 

set. There was little improvement in the overall classification of most lithology with 
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the model trained with augmented data with or without tuning, and dolomite and 

halite were misclassified (Figure 6.3). 

 

 

Figure 6.3. Normalised confusion matrix of KNN model with augmented data. 

Comparing the actual label and predicted label for the three model as shown in 

figure 6.4 below, none of the model can accurately classify the thin beds of shales 

and chalk. KNN performed worst as it misclassifies most of the thin layers of 

lithology. 
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Figure 6.4. Prediction analysis of well 15/9-23 comparing the actual label to the 

predicted label in RF, XGB and KNN. 
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CHAPTER SIX 

CONCLUSION 

Within the scope of this study, I investigated the capability of nine different machine 

learning algorithms to classify rock facies. The various machine learning algorithms 

that I have tried includes Random Forest (RF), Decision tree, Support Vector Machine 

(SVM), Gradient boosting, Categorical boosting (CatBoost), Light gradient boosting 

(LGBM), Extreme gradient boosting (XGB), K-Nearest Neighbour (KNN), and logistic 

regression, both with and without feature engineering, outlier removal, and ML 

imputation. According to the findings, the Random Forest model produces the best 

results out of all the algorithms that were taken into consideration, with an accuracy 

of 91%. The XGB model and the CatBoost model came in second and third, with an 

accuracy of 89.6% and 89.1% respectively. When the entire model was trained and 

tested on the open and hidden set, XGB model trained with hyperparameters 

performed best with accuracy of 86%,80% and 81% on the train, open and hidden 

dataset respectively. With RF model trained with hyperparameters, the accuracy is  

of 98%,79% and 80% on the train, open and hidden dataset respectively. Therefore 

XGB is a better model for this data because produce good accuracy on the both 

training and test data, while in RF the model could not generalise on the test data 

because of overfitting. 

 

The thesis's main contribution can be broken down into three sections. The first 

major takeaway from the research is that machine learning can accurately predict 

rock facies in the FORCE data set, with an average accuracy of 81%. Second, Models 

trained with hyperparameters performed better, as well as model trained with 

augmented data. To conclude, feature engineering on the test data was most 

effective with KNN and LGBM, feature engineering also improved the classification 

of some lithology, especially lithologies like coal, limestone and marl with few 

observations point in the data. It was also observed that the removal of outliers did 

not improve the model’s performance.  
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Considering these encouraging outcomes, future work will focus on analysing deep 

learning approaches to feature learning and classification (e.g., convolutional neural 

networks). 

 

Recommendation 

First and foremost, there is need to address the problem of unbalanced dataset. This 

can be accomplished by weighting samples in accordance with the frequency of the 

classes. If we give fewer common classes a higher weight, the model may be able to 

classify them more accurately. In addition, we could try the upsampling or 

downsampling method to train our model on a dataset that is more evenly 

distributed. 

Then the tuning of the hyperparameters should be improved. Either by performing 

additional iterations of our existing grid search or by utilising bayesian search, which 

typically yields superior results. 

Alternate types of models are another option that can enhance the quality of our 

findings. For instance, LSTM architecture can be used to simultaneously classify all 

the samples that come from the same well. In this way, our model will classify a 

sample based on information obtained from its surroundings. Additionally, this kind 

of model might be able to capture the structure of the lithofacies that are found 

underground. 
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APPENDIXES 

Appendix A: Data loading and exploration 
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Appendix B: Data Pre-processing  
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Appendix C: Base model for 100,000 sample of data  
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Appendix D: Data augmentation 
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Appendix F: Feature engineering 
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Appendix G: Base model for entire dataset 

This is similar for other models, only that different scenarios were 

added. 
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Appendix H: Ethics application 
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