

MSc Applied AI and Data Science Dissertation COM726

Solent University

Bug Detection Using Artificial Intelligence and Cyber Security

Project Presented

September 2022

Khushbu Kalgude

by

Abstract

Every year, more vulnerabilities are found in software and websites, whether they are found

internally in proprietary code or reported officially. These vulnerabilities have a strong

probability of being used against users, which could damage systems and lead to data leakage.

Injection attacks using structured query language and header vulnerabilities are among the

risks. When speaking of web-based applications, SQL injection attacks are among the most

common vulnerabilities. An organization or corporation may suffer harm as a result of this

type of attack since the attacker can steal sensitive and important information. Nowadays,

using ML to many situations shows to be greatly advantageous. It uses to construct a variety

of items that function like human and save time. In this research paper used an algorithm

called Extreme Gradient Boosting algorithm from ensemble machine learning methods to

classify and detect SQL injection. And created a chatbot with it; by using it the user will be

able to know about the identified vulnerabilities, the risk, and the mitigation technique.

Keywords: Vulnerabilities, SQL Injection, Machine Learning, XGBoost Algorithm, Chatbot

ACKNOWLEDGEMENT

I feel fortunate to get continuous guidance, support, and encouragement from my supervisor

Mr. Hamidreza Soltani. His experience in Artificial Intelligence and Machine Learning helped

me to develop and implement my project and overcome the technical challenges that I faced

during implementation. I would like to thank him for his constant guidance that helped me in

the research and implementation related to my project. I appreciate the support provided by

the Solent University Southampton lecturers, Dr. Olufemi Isiaq, and my course leader Dr.

Shakeel Ahmed, during my studies.

Contents

1) Introduction and Background ... 1

1.1) Research Questions ... 2

1.2) Aim and Objectives .. 2

2) Literature Review .. 4

3) Method and Methodology ... 5

 3.1) Resources ... 5

 3.2) Dataset………5

 3.3) Exploratory Data Analysis…………………………………………………………………………………………..6

4) Machine Learning Algorithms ... 14

 4.1) Logistic Regression .. 14

 4.2) Random Forest .. 14

 4.3) Decision Tree ... 15

 4.4) Extreme Gradient Boosting ... 15

5) Web Application .. 16

 5.1) Web Application using .NET Core .. 16

 5.2) Web Application using Java ... 20

 5.3) Main Web Application using Python ... 23

6) Experiment and Results .. 26

 6.1) Compare ML Algorithms.. 27

 6.2) Results ... 30

 6.3) Final Backend Coding .. 31

7) Chatbot ... 37

8) Conclusion ... 39

9) Limitation and Future Work ... 40

References ... 41

Figures

Figure 1: Imbalance Dataset

Figure 2: Random Undersampling

Figure 3: Balanced SQL Query Class Distribution

Figure 4: Duplicate Data in Dataset

Figure 5: Remove Duplicate Rows

Figure 6: Log Query Length

Figure 7: TF-IDF

Figure 8: Load _Layout.cshtml in Variable

Figure 9: Faculty Index Page

Figure 10: Update Page

Figure 11: Database of .NET Web Application

Figure 12: Model File Coding

Figure 13: Using Method

Figure 14: SQL Configuration

Figure 15: SQL Configuration for Update

Figure 16: Login Page

Figure 17: Registration Page

Figure 18: Home Page

Figure 19: Result of Home Page

Figure 20: Database of Java Web Application

Figure 21: Style the Content

Figure 22: Default Page Coding of Vulnerability Detection

Figure 23: Front-end of Vulnerability Detection Website

Figure 24: Web Application Flow Chart

Figure 25: CountVectorizer Function

Figure 26: Output of matrix

Figure 27: Flask and HTTP Session

Figure 28: Fetch Forms Details

Figure 29: Test Vulnerability in Form without ML

Figure 30: Result 1 of Vulnerabilities Detection Without ML Algorithm

Figure 31: Result 2 of Vulnerabilities Detection Without ML Algorithm

Figure 32: XGBoost Algorithm Apply to Detect SQLi

Figure 33: Web Page of SQLi Detection with ML

Figure 34: Web Page Result of SQLi Detection with ML

Figure 35: Coding of intents.json File

Figure 36: Chatbot

Tables

Table 1: Resources

Table 2: Decision Tree vs Extreme Gradient Boosting

Acronym

SQL – Structure Query Language

OWASP – Open Web Application Security Project

AI – Artificial Intelligence

IDS – Intrusion Detection System

HTML – Hypertext Markup Language

CSS – Cascading Style Sheets

C# - C-sharp

SQLi – SQL injection

NLTK – Natural Language Toolkit

NLP – Natural Language Processing

TF-IDF - Term Frequency and Inverse Document Frequency

ML – Machine Learning

MVC – Model View Controller

Bug Detection Using Artificial Intelligence and Cyber Security

1

1) Introduction and Background

Every year, development and uses of websites or software has been very rapid in every field,

with that also increase the number of security challenges. In order to develop web

applications, various types of code are used like jQuery, HTML, CSS, and many more. A

database is also used to store user data. When a website is being developed, there are

occasionally certain coding flaws that go undiscovered. Additionally, developers generally

utilize open-source codes without verifying whether the entire code is secure, and security

gaps allow attackers to access systems and apps. There are numerous types of vulnerabilities,

including SQL injection, XSS, broken authentication, session management, etc. Injection

attacks have been ranked as the most common and dangerous type of attack that web

applications receive by OWASP for several years running. SQL and XSS injection are the most

major injections. For example, when an attacker sends SQL commands to a SQL database,

they gain control over the server and commit attacks known as SQL injections. By doing this,

an attacker may be able to take complete control of the server. The attacker might gain access

to incredibly sensitive data, and as a result, they can destroy and modify it. Using various

tools, the cyber security analyst can identify these types of vulnerabilities in various websites

or pieces of software, however the procedure takes time. Another method to identifying

vulnerabilities which has static analysis of incoming online traffic, commonly referred to as

signature detection, is a common method of classical web attack mitigation. This tactic

requires the creation of a signature specific to the online attack, and when this signature is

recognized, a firewall or other security appliance can block the suspect traffic (Ross, Spring

2018).

The use of machine learning algorithms to identify and stop different cyber security risks has

recently generated a lot of discussion. Numerous machine learning methods have been the

subject of much research on the detection of injection attacks. There are vulnerabilities

detection using machine learning does not yet have a single ideal method or technique that

can be used to solve every injection detection challenge. Before choosing a specific strategy,

an issue must be examined against a variety of algorithms that fall within the classification or

regression procedures, and the results must be compared for maximum accuracy (Mishra,

Spring 5-23-2019).

Bug Detection Using Artificial Intelligence and Cyber Security

2

Random forest, decision trees, Logistic Regression, Support Vector Machine, Gradient

Boosting, and neural networks are often used methods in this research. The fact that these

methods can identify attacks is one of their main advantages. However, depending on the

chosen method, there may be a risk of longer processing times with these techniques (Ross,

Spring 2018).

In this research begins with an introduction to various cyber security vulnerabilities, different

websites created using various programming languages, and the requirement and reason for

creating a better injection detection system. After that, learn about SQL injection attacks and

how related work has been done in the injection detection field so far. There is enough

literature available from all the important implementations and research work that has been

done thus far to understand the issue and make improvements. An introduction to machine

learning methods, which is the general strategy utilizing to fix this problem, it is given in the

section of implementation code and artefact explanation. It is a web application for detecting

vulnerabilities, but since everyone is not aware of every vulnerability, a chatbot developed to

provide information about work of vulnerabilities, their risks, and how to prevent it.

1.1) Research Questions

Does Machine Learning have the potential to improve to vulnerabilities detection technique?

Does ML serve as a bridge between research and reality?

How might technologies help to make work easy and time saving?

1.2) Aim and Objectives

Aim: Detect cyber security bugs or vulnerabilities in a web application using cyber security

and AI concept.

Objectives:

Developing one web application using Machine learning algorithm which detect

vulnerabilities in given URL and it is the main goal of this research. Machine learning always

work with large amount of dataset for training and testing. So for that need to data collection,

data cleaning, select different ML algorithms then choose best ML algorithm, use different

Bug Detection Using Artificial Intelligence and Cyber Security

3

libraries, flask, and create some models. For testing creates vulnerable dummy websites to

check vulnerability detection web application.

Bug Detection Using Artificial Intelligence and Cyber Security

4

2) Literature Review

A study of the literature has been done to look at the current research in the area of web

application vulnerability analysis using machine learning, as well as its limits and potential

future directions. The next section provides a summary of the identified possible uses for

current techniques and methodologies (Asra Kalim, February 2020). Utilizing various

technologies like Acunetix, Nessus, BurpSuite, and other cyber threats are identified. For

instance, Acunetix online generates a vulnerability testing report and many execute dynamic

and interactive application security testing scans. However, in order to save both time and

memory, research is now working to identify the injection using machine learning methods.

In terms of financial loss and the exposing of private information, SQL injection remains one

of the most harmful security flaws. Traditional defense tactics frequently use IDS rules that

are static, signature-based, and mainly successful against known attacks but ineffective

against unknown or zero-day attacks. In that study, data collection for SQL injection research

is typically done using one of two ways: either by recording actual web traffic entering a

business or honeypot, or by creating realistic-looking simulated traffic (Ross, Spring 2018).

Use plain-text and SQL injection queries to detect vulnerabilities in other research paper. Also

utilized the tokenization method and found accuracy to compare algorithms. The regular

expression object is generated using numerous SQL queries and SQL reserved words. Regular

expressions are frequently used in pattern matching. Lexical analysis along with regular

expression in python is used to implement tokenization. The final model that was put into

action can distinguish between plain-text data and SQL injection (Mishra, Spring 5-23-2019).

In this research makes use of earlier research approaches and methodologies, including

tokenization, comparison algorithms, and various machine learning algorithms. Additionally

developed a malicious website using various programming languages. Based on comparisons

between the accuracy of various algorithms, the best algorithm is found.

Bug Detection Using Artificial Intelligence and Cyber Security

5

3) Method and Methodology

3.1) Resources

Platform Jupyter

Visual Studio 2022

Eclipse

Visual Studio Code

Github

Database Platform MySQL workbench 8.0 CE

Microsoft SQL Server Management Studio 18

Languages:

Front-end HTML

CSS

jQuery

C#

Back-end .net

Java

Python

Table 1: Resources

3.2) Dataset

In this research, a variety of vulnerabilities were discovered, but SQLi was one of the most

significant. There are numerous datasets available for it from various sources. SQLi is a

technique where the attacker creates or modifies SQL queries, meaning the attacker or hacker

who wants to gain access to the organization’s backend database and information creates

malicious SQL queries that can quickly obtain the information that is essential to the

organization or company. The dataset was gathered through the Kaggle website for the initial

phase, which had as its primary goal (Sajid, 2021). Query and label are the two columns in the

dataset. SQLi, authentic SQL, and plain-text are all combined in the query column (Farooq,

2021). The values in the label column are 1 and 0. Where 1 denotes a specific query that may

Bug Detection Using Artificial Intelligence and Cyber Security

6

access a database, such as a SQLi query, and 0 denotes a query that cannot access a database,

such as a genuine SQL query or plain-text. There are 30919 rows in the dataset.

Data preprocessing is the second stage. Unnecessary spaces and escape sequences were

removed, and all the queries were changed to lowercase in order to reduce data noise and

increase precision. The SQL queries in the data are syntactically incorrect, which could cause

problems.

3.3) Exploratory Data Analysis

Data can be read using the panda function “data = pd.read csv(‘Modified SQL Dataset.csv’)”

and the number of rows can be obtained using “.format(data.shape[0])”. Only the data fields

Query and Label from the dataset were used. The query field is of the object type and contains

SQLi queries, SQL queries or plain-text. Labels field has two labels, 0 and 1, label 0 for SQL or

plain-text query, and label 1 for SQLi query. SQLi query means malicious code and SQL query

means non-malicious code. Next, determine how the data points are allocated among the

labels. For example, determine how many data points belong to label 1 and how many to

label 0. There is a category imbalance between data points since most data points fall under

label 0, meaning that there is more plain text or normal SQL queries in the data. In this

situation, the dataset needs to be balanced first because it is imbalanced.

Figure 1: Imbalance Dataset

First read, described, and check dataset. Then give the label “non-malicious” and “malicious”

to check imbalanced dataset. Here used undersampling method to balance selected dataset.

In this method, removes the data from the majority class. It randomly selecting examples

Bug Detection Using Artificial Intelligence and Cyber Security

7

from the majority class to delete from the training dataset. In the transformed version of the

training dataset, this results in a decrease in the number of cases in the majority class. Until

the desired class distribution, such as an equal number of samples for each class, is reached,

this process can be repeated. This method may be more appropriate for datasets with a class

imbalance, while a useful model can still be fitted if there are enough examples in the minority

class. A drawback of undersampling is that instances from the majority class that might be

relevant, or even critical to fitting a strong decision boundary are eliminated. Because samples

are eliminated at random, there is no method to identify or save “excellent” or more

informative examples from the majority class. Before using this method need to import

“RandomUnderSampler” after that defined dataset and undersample strategy. It is possible

to define a class that supports the sampling strategy argument, which can be set to “majority”

to automatically balance the majority class and minority class (Brownlee, 2021). The

untransformed dataset can then be passed as inputs when running the fit_resample()

method, which will fit the transform and apply it to the dataset in one step.

Figure 2: Random Undersampling

After applying undersampling method got the balanced data.

Bug Detection Using Artificial Intelligence and Cyber Security

8

Figure 3: Balanced SQL Query Class Distribution

When there are many similar pieces of data, the duplicate function must be used to find it,

and the drop function must be used to remove it from the dataset, which is done in the

following step.

Figure 4: Duplicate Data in Dataset

There are 166 rows which are duplicates, so remove the duplicate rows using drop function.

Figure 5: Remove Duplicate Rows

Additionally, the “.isnull()” function was used to check whether a query was null, and the

same query was verified with a different label. Unnecessary data was then eliminated using

the same drop function. A plot of WordClouds was finished to show the most frequent terms

across various labels. The queries for the various labels were first separated, and then

WordCloud plots for label 1 and label 0 were performed separately. Null, chr, char union, and

select count case are the words from label 1 that are used more frequently in SQL injection

Bug Detection Using Artificial Intelligence and Cyber Security

9

queries. For the purpose of feature engineering, these most common words are useful. As we

can see, the standard SQL keywords that are used more frequently in SQL queries include

select, top, order, count, average, join, etc. these are all the elements that differentiate

between a regular SQL query and a SQL injected query, and they can all be seen in the queries

for the chosen dataset that are composed of special characters, punctuation, etc. As a result,

the text pre-processing procedure would not include the removal of punctuation, html tags,

etc. Because it eliminates several special characters that are essential for feature engineering

and differentiating between SQL and SQLi queries, word stemming and stop word removal

are also not carried out. Text was only transformed to lowercase as part of the pre-processing

using “lower()” function.

In the second stage, all the features from every query are extracted, and the best features are

chosen. The stage after that deals with training the model (Farooq, 2021). Here used some

are new features; that features store in a dataframe. Additionally, it included logistical

operators, null values, real keywords, and more. The words select, top, order, fetch, join,

average, count, sum, rows, and other real keywords are based on wordclouds. Then

determine the quantity of actual keywords included in each query. Analysis of extracted

features and it start to describe the length of each query. Now does different plotting of

feature vs output plots and based on that check whether the feature helpful in predicting the

output labels. Started with plot violin plot and distribution plots. Then checking distribution

of query_length vs labels. If it is overlap then hard to distinguish between SQL and SQL

injection queries. Checking the distribution of log transformed values to see they differentiate

between labels.

Bug Detection Using Artificial Intelligence and Cyber Security

10

Figure 6: Log Query Length

The above distribution shows there is slight overlap between label classes so we avoid taking

log transformed values for model building (Havannavar, 2021). After that find the number of

words in query and based on that maximum and mean values are 216 and 12 respectively.

Above mentioned all process done for every feature like number of double quotes in query,

number of single quotes in query, number of punctuations in a query and all others.

The training and testing sets are randomly chosen from the dataset using a normal ratio of

70:30 (70% for training and 30% for testing) using the train test split function included in the

Sklearn package:

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.3,stratify = y)

Bug Detection Using Artificial Intelligence and Cyber Security

11

The model runs into a common issue while processing the data: although classic machine

learning models expressly take in organised tabular numeric data, the datasets obtained are

entirely unstructured textual data. In this case, a text parser is helpful. Text parsing is the

process of dividing a given textual string into more manageable pieces in accordance with

pre-established rules. The two most widely used techniques for parsing texts are regular

expression separation and tokenization. The former processes the targeted text to parse the

desired regular expressions, such as “[a-z]” and “[t]”. In the latter, each token – which could

be a character, word, or phrase – division the text into smaller pieces called tokens. For this

approach, tokenization works well because regular expressions cannot determine whether a

query is malicious in the context of SQL injection attacks. Word tokens are used to split

queries.

For example: Parsing “or 1=1 -- 1” into “or”, “1=1”, “--”, “1”.

CountVectorizer is used to enhance text data queries for bags of words. A collection of text

documents is transformed into a vector of token counts using CountVectorizer. Additionally,

it makes it possible to pre-process text data before creating the vector representation. It is a

very flexible feature representation module for text because of this functionality (Kumar,

2021). Use the bigram and unigram NLTK methods. Pass the value of n=1 to the NLTK’s ngrams

function to produce 1-grams. However, you must first tokenize the sentence and then provide

these tokens to the ngrams function. Bigram is similar to a unigram but differs slightly in that

the NLTK’s ngrams function generates 2-grams when n=2 (Fardeen, 2021).

Although word level TF-IDF vectors are one of the featured engineering techniques for NLP,

they turn out to be the most successful for this SQLi attacks detecting model. Word Level TF-

IDF vectors, also known as Term Frequency and Inverse Document Frequency, are an

important index for term searching and figuring out the relevance of specific terms in a

document. Term Frequency tracks how frequently a word appears in a specific document, as

opposed to Document Frequency, which counts the number of times a word appears across

all documents. With the help of this widely used method, text may be transformed into useful

numerical representations that can be used to fit machine prediction algorithms. The

following equation can be used to determine a word’s relevance:

Term-Frequency / Document-Frequency or Term-Frequency * Inverse-of-Document-Frequency

Bug Detection Using Artificial Intelligence and Cyber Security

12

The main advantage of TF-IDF is that it will presuppose that the documents are just a list of words with

no real connection between it. Since SQL does not have tense or grammar restrictions like human

languages do, this is a simple yet effective solution for the use situation. NLP read queries word by

word, to put it simply. In order to check for harmful code, NLP split down malicious searches into single

words. The number of times a word appears in a document relative to the total number of documents

it appears in is used to calculate a word’s TF-IDF score.

TF-IDF = TF(t, d) * IDF(t)

Term frequency: number of times term t appears in a document d

Idf is computed as

Idf(t) = log[n / df (t)] + 1,

Where n is the total number of documents in the document set and df(t) is the document

frequency of t, the document frequency is the number of documents in the document set

that contain the term t (developers, 2007 - 2022).

Bug Detection Using Artificial Intelligence and Cyber Security

13

Figure 7: TF-IDF

After TF-IDF section, featurizing text data or SQL queries using average word2vec. Compute

average word2vec for each train data query. And these same things do it using TF-IDF

weighted word2vec. Then encoding numerical feature and at last concatenating encoded

features with TF-IDF word2vec.

Bug Detection Using Artificial Intelligence and Cyber Security

14

4) Machine Learning Algorithms

The proposed model used the following machine learning algorithms:

4.1) Logistic Regression

Using the supervised learning classification process known as logistic regression, the

probability of a target variable is predicted. There are only two potential classes because the

dependent variable is bidirectional.

The dependent variable is, to describe it simply, a binary variable, with data recorded as either

1 (which represents success/yes) or 0 (which represents failure/no). A logistic regression

model predicts the value of P(Y=1) as a function of X mathematically. It is one of the most

fundamental machine learning algorithms and may be used to categories a variety of

problems, such as the detection of spam, the prediction of diabetes, the detection of cancer,

etc.

The use of logistic regression and linear regression differs significantly. In contrast to linear

regression, which is used to solve classification issues, logistic regression handles regression

issues. Logistic regression is an important machine learning technique because it can

categorise new data using both continuous and discrete datasets. Using several data formats,

logistic regression may be used to categorise observations and quickly find the variable that

will be most useful for the classification (Anon., 2011 - 2021).

4.2) Random Forest

The supervised learning method includes the well-known machine learning algorithm

Random Forest. It can be applied to ML classification and Regression issues. Its foundation is

the idea of ensemble learning, which is the technique of combining various classifiers to solve

a challenging problem and improve the performance of the model.

Random Forest is a classifier that, as the title indicates, “contains a number of decision trees

on various subsets of the provided dataset and takes the average to enhance the predictive

accuracy of that dataset.” Instead of depending on a single decision tree, the random forest

uses predictions from all the trees to anticipate the outcome based on which predictions

received the most points (Anon., 2011 - 2021).

Bug Detection Using Artificial Intelligence and Cyber Security

15

4.3) Decision Tree

Decision tree is a supervised learning method that can be applied to classification and

regression issues; however, it is most frequently used to solve classification issues. In a

decision tree, the algorithm begins at the root node and uses that information to predict the

class of the dataset that is provided. This algorithm follows the branch and jumps to the next

node by comparing the root attribute’s values to those of the record attribute (Anon., 2011 -

2021). The splitting, pruning, and tree selection processes are used to operate it. It allows for

the construction of the decision tree using both numerical and categorical data (Pedamkar,

2022).

4.4) Extreme Gradient Boosting

To eliminate training errors, an ensemble learning strategy known as “boosting” transforms

a collection of weak learners into strong learners. A model is fitted to a random sample of

data before being successively trained in boosting. In other words, each way to approach to

overcome the flaws of the one that came before it. The weak rules from each classifier are

joined on each iteration to produce a single strong prediction rule.

Boosting is a powerful algorithm that converts a week learner into a strong learner. They

make use of the idea of the weak learner and strong learner conversation by using the

weighted average values and higher votes values for prediction. These algorithms handle data

using margin maximizing categorization and decision making.

Bug Detection Using Artificial Intelligence and Cyber Security

16

5) Web Application

A web application was created to detect injections from websites based on the research, and

machine learning applies for the injection detection process. That web application created in

the python programming language. Created two dummy websites as well, one of which done

using the java programming language and the other using the .net core framework.

Additionally, the frontend makes use of HTML, C#, CSS, and jQuery. First started with an

explanation of two dummy websites and then started the main vulnerability detection

website.

5.1) Web Application using .NET Core

.Net is software framework. It is free, open-source developer platform for developing

different kinds of web applications. In this case the website uses .net core for development.

The most recent edition of Microsoft’s general-purpose programming platform, .NET

Framework, is called .Net Core. It is free and open-source. Working with windows, Mac OS X,

and Linux, it is a cross-platform framework. Many other types of apps, including those for

mobile, desktop, web, cloud, IoT, machine learning, microservices, games, and more, may be

made using the .NET Core Framework (Anon., 2022). Modern libraries and languages are

compatible with .NET Core, which quicker, scalable, and made for them (Singh, 2019).

A website built in .NET Core stores the data of the school. It has three parts faculty, student,

and subjects. In each of the three, data can be added, removed, or changed. A search bar on

the website that allows users to quickly look up any information which has stored in web

application.

Code Explanation

The type of the model provided to a view is defined by the @model directive. The following

model definition is seen in the Views/Faculty/Create.cshtml view of an ASP.NET Core MVC

application built with individual user accounts (Edward, 2019):

@model Faculty

Then load _Layout.cshtml into a single variable. The Views/Shared folder automatically

contains a _Layout.cshtml file when you create an ASP.NET MVC Web application in Visual

Bug Detection Using Artificial Intelligence and Cyber Security

17

Studio 2015 or later versions. The layout that can be applied to the application’s views is

represented by this file. The fundamental framework of a view can be found in this

_Layout.cshtml file (Adil, 2021).

Figure 8: Load _Layout.cshtml in Variable

Then labels and input fields are arranged to enter the relevant data and finally the “submit”

button.

The next file is “index.cshtml”, which is default page shown when start website. Here first

“create” button to insert any new data entry and beside that given one search box to find any

data. After that given list of stored data information which is faculty id, name, skills, total

number of students and update and delete button in every rows. The “index” page’s front

view is shown below, and other fields are similar to it.

Figure 9: Faculty Index Page

Let’s discuss the “update.cshtml” file now. The view structure of the update data is set in that

file. The labels and input boxes all are set to update the data of the selected row. Then lastly

set up the “submit” button to update the dataset with the updated information.

Bug Detection Using Artificial Intelligence and Cyber Security

18

Figure 10: Update Page

In other fields, this kind of coding has been completed for subjects and students, and it is kept

in the views folder.

The data of each website is stored in the database. “Microsoft SQL Server Management

Studio” platform is used to store the database of .NET web application.

Figure 11: Database of .NET Web Application

In the MVC framework, the model represents domain-specific data and business logic. It

keeps the application’s data up to date. Model objects use the persistence store as a database

to retrieve and store model state (Anon., 2022). In the model part stored all “.cs” file. Here,

Bug Detection Using Artificial Intelligence and Cyber Security

19

the data is obtained from the users and sets the data. A similar coding task has performed for

students and subjects.

Figure 12: Model File Coding

Now talk about the final subject, “Controllers,” which establishes the control strategy. First

start with “using” method. Two main applications exist for the keyword “using” : a scope that

will be the final point for an object’s elimination is defined by the using statement. “Using” a

namespace’s alias or importing types from other namespaces are both possible with the using

directive.

Using a namespace’s declared types without using the namespace’s fully qualified name

allows you to use those kinds. The using directive imports every type from a single namespace

in its simplest form, as demonstrated in the following (Microsoft, 2022):

Figure 13: Using Method

Created home controller class and inside the class created one more class for configuration

and one class for action. A code is written in the action to provide configuration with a SQL

connection. After that, SQL query “Select * from faculty” stored in one variable and that data

type is string. Then used a while loop to read the entire set of data using a SqlDataReader.

Next close the SQL connection.

Bug Detection Using Artificial Intelligence and Cyber Security

20

Figure 14: SQL Configuration

This website uses three separate functions to “create”, “update”, and “delete” data and has

appropriate SQL configuration for each.

Figure 15: SQL Configuration for Update

All this process is written for only one field faculty and same process and coding is done for

student and subject part.

5.2) Web Application using Java

A java web application is made up of both static and dynamic resources, such as Java classes

and jars, Servlets, and JavaServer Pages (HTML pages and pictures). A WAR (Web ARchive) file

can be used to deploy a java web application (Vogel, 2022). This is second dummy website

Bug Detection Using Artificial Intelligence and Cyber Security

21

which created in java language using eclipse platform and for the database used “MYSQL

Workbench 8.0 CE.” For that need configuration of Apache tomcat server. This is one login

website and, in this web, application has three different pages; login page, registration page,

and home page. Login is default page; in that page given registration page link and after login

user can see home page.

Code Explanation

This web application coding start with three “.jsp” files; index.jsp, login.jsp, and

registration.jsp. Login is the default page so let’s start the code with the login.jsp file; this file

contains the coding of the front view of the login page. Using the <div> and <section> method

arranged the username, password field and login button on the right-hand side. And the

opposite side organized create login account with one image. If user enter correct username

and password then it redirects on home page otherwise show error message and that related

coding written at last between <script> tag </script>.

Figure 16: Login Page

Utilized the same formatting techniques to create the registration page and set up five text

fields for users to enter their information. When a user clicks the submit button, the data is

stored, but if a necessary field is left empty or contains incorrect information, an error notice

is displayed.

Bug Detection Using Artificial Intelligence and Cyber Security

22

Figure 17: Registration Page

Using the same method added some static content on home page; when user login then they

can see that content.

Figure 18: Home Page

Figure 19: Result of Home Page

Bug Detection Using Artificial Intelligence and Cyber Security

23

The coding of SQL connectivity is given inside the “.java” files. First import package in

login.java file and created public class login. Take two variable and get the username and

password value. Uses try a catch method. Inside try method give connection with mysql and

set the select query. Then used if…else… condition for login. If user name and password is

right then it redirect on “index.jsap” page otherwise it shows the failed status. In

registrationservlet.java file, it has four parameters so it get values of all four parameters and

using insert query that four parameters data store in database and it is used when user login

on web application.

Figure 20: Database of Java Web Application

5.3) Main Web Application using Python

The main Vulnerability Detection website is built in Python language. In this part, the front

end of the website will be discussed and the backend will be described briefly in the machine

learning part. The whole front-end coding for the website is included in the “index.html” file.

Additionally, declared formatting for the content in the same file, such as background colour,

font-family, font size, height, etc.

Bug Detection Using Artificial Intelligence and Cyber Security

24

Figure 21: Style the Content

Here, two menus are defined: the home menu and the SQLi-Detection-with-Machine-

Learning menu. Home menu is the default page, and it has been used to find all five defined

vulnerabilities on the same page. Another page, SQLi-Detection-with-Machine-Learning, is

used to find only the SQLi vulnerability; on that page uses machine learning algorithm to find

it and that part is briefly describe in machine learning part.

Figure 22: Default Page Coding of Vulnerability Detection

Bug Detection Using Artificial Intelligence and Cyber Security

25

There are two menus, one text area, and a submit button on the default page. Here used post

method. The text area and submit button on the second page are also the same as on the

default page but only the backend coding is different.

Figure 23: Front-end of Vulnerability Detection Website

The URL of the website from which the vulnerability is to be found is entered in the text area.

After entering URL in text area if any vulnerabilities detected then it shows on the same page

below of vulnerability detection button, it is only for default page but for other menu that

detected vulnerability statement show on new tab.

Bug Detection Using Artificial Intelligence and Cyber Security

26

6) Experiment and Results

This section discusses the coding process, including how it began, the challenges it faced, and

the major focus of the discussion – a comparison of various algorithms. And last machine

learning algorithm that has been employed in this research or coding. Below given one flow

chart of vulnerability detection web application means how it work.

Figure 24: Web Application Flow Chart

Above given web application flow chart. First collect dataset; that dataset train and test in

jupyter notebook for model building, based on that finalize ML algorithm and using that

algorithm created vulnerability detection website. In third section, enter URL in python site

to check vulnerabilities. That URL get as request and fetch() functions fetch that structure and

Bug Detection Using Artificial Intelligence and Cyber Security

27

fetch text input from mentioned URL and invoke search button. That give as a response and

execute with malicious query. There site database and code are accessible form outside. It

compares and verify that site is vulnerable or not if query is found malicious using machine

learning, then it shows message and end the process.

6.1) Compare ML Algorithms

In starting of this research document already described various machine learning algorithms

which has used to develop vulnerability detection web application. Before choosing one, all

algorithms must be compared, and to do this, accuracy, f1-score, precision, and recall must

be determined.

NLTK should be imported first because it is an important library for python tasks like

tokenization, stemming, tagging, and classification (Adamjee, 2020). Using NLTK download

stopwords. Stopwords are common terms like “the”, “and”, “I”, etc. that appear frequently

in text but don’t provide context for the document’s main idea. To clean up the data and find

terms that are more uncommon and perhaps more relevant to the research, we can exclude

these stop words from the text in a specific sample. Stopwords like “the”, “is”, and “are” may

appear in text. Stopwords in the text that must be processed can be filtered out. Although the

NLTK module includes a list of stopwords, there is no single list of stop words used in all NLP

research (Anon., 2015 - 2022).

After that, import the required libraries, and then use the read_csv function to read the data

from the dataset which has two columns query and label. Utilised countvectorizer technique

with stopwords, min_df, and max_df. Min_df = 2 means ignore terms that appear in less than

2 documents and max_df = 0.8 means ignore terms that appear in more than 8% of the

doucments (Markham, 2021). Now use “.fit_tranform()” for X values. By using a

fit_transform() on the training data, the scaling parameters of the training data are

determined. In this instance, the model will determine the mean and variance of the features

in the training set. The fit approach is used to determine the mean and variation of each

characteristic reported in the data. All features are transformed using the associated means

and variances by the transform method (JavaTpoint, 2011-2021).

Bug Detection Using Artificial Intelligence and Cyber Security

28

Figure 25: CountVectorizer Function

The first starts with logistic regression and for that logistic regression is imported from the

Sklearn library. Then use “.fit()” for x_train and y_train. The mean and standard deviation of

the specific feature will be calculated using the .fit() method, and these values will be used

for analysis in the future (JavaTpoint, 2011-2021). Using the score method get the accuracy

of model and using classification_report measured the quality of predictions from a

classification algorithm means measuring precision, recall, f1-score, and support. Metrics like

recall and precision are frequently used to determine how well machine learning models or

overall, AI solutions are working. It aids in understanding how accurately models predict the

future. The percentage of accurate positive predictions is known as precision. The fraction of

actual positive labels that the model properly detected is measured by recall (Ganesan, 2021).

Precision and recall are combined into the F1-score regarding a particular positive class. The

f1-score can be seen of as a weighted average of precision and recall, with its best value being

1 and its lowest being 0 (Ng., 2022).

F1 = 2 * (precision * recall) / (precision + recall)

There is a 0.92 accuracy score for logistic regression. Accuracy score of random forest

algorithm is same as logistic regression. The Extreme Gradient Boosting technique, Decision

Tree, and Random Forests all use the same procedure. First importing necessary algorithm

(i.e. random forest classifier) from assemble module, creating a RF classifier, fit function is

used to train the model using the training sets as parameters, performing predictions on the

test dataset, metrics are used to find accuracy or error, and using metrics module for accuracy

calculation. Accuracy score of random forest algorithm is same as logistic regression. Decision

tree has an accuracy score of 0.87 and Extreme Gradient Boosting is 0.89.

The first step is to import the relevant libraries, such as sklearn, scipy, pickle, joblib, pandas,

numpy, matplotlib, and seaborn. After that load the countvectorizer of unigram_bow which

has done previous and using pickle function load it. If need persistency in data, pickle is helpful

Bug Detection Using Artificial Intelligence and Cyber Security

29

in apps. Using pickle is the best option if need to save the program’s state data on a disc for

later usage. Alternatively, use pickle to store the data in our database or communicate it

through a TCP or socket connection. Then written code to print the classification metrics in

that first representing A in heatmap format and then representing B in heatmap format. But

this coding section represent at last. But before that, output the prediction whether it belongs

to class 1 or class 0 for a given SQL Query.

Here finding most occurring words and that are null, chr, char, select. These words are used

to create new features. For example, count of null values in text, count of chr values in text,

count of char values in text etc. these features will help the model to differentiate between

SQL and SQLi queries. The most occurring words are select, fetch, count, order, first, etc.

which are normal SQL keywords. There are creating query by appending keywords, characters

numbers and special symbols as well by using regular expressions.

The next step was to produce the classification metrics for the given list of query and labels

after receiving the predicted results from the loaded model. Defined a single function, divided

the query and labels into separate lists, and then called function_1 on the query lists above

to retrieve the predicted labels. In function_1, that will create entire pipeline to predict the

output i.e., for any given query will predict the output of it. In function_2, that will create

entire pipeline to output the performance metric. Created list of tuples of queries and labels

and calling the function_2 method to print the classification metrics. Below given precision

matrix, confusion matrix, and recall matrix.

Figure 26: Output of matrix

Bug Detection Using Artificial Intelligence and Cyber Security

30

6.2) Results

Research shows that boosting approaches in machine learning can help reduce bias in models.

The results of experiments show that Gradient Boosting approach does perform better in

terms of prediction accuracy (Mishra, Spring 5-23-2019).

Parameters Decision Tree Extreme Gradient Boosting

Accuracy 87.02 89.64

Table 2: Decision Tree vs Extreme Gradient Boosting

Gradient Boosted decision trees are represented in XGBoost. Many Kaggle competitions have

a pronounced dominance of XGBoost models. This technique generates decision trees in a

sequential manner. In XGBoost, weights are significant. All independent variables are given

weights, which are subsequently used to feed information into the decision tree that predicts

outcomes. The second decision tree is then fed these variables after increasing the weight of

variables that the tree incorrectly predicted. To create a robust and accurate model, these

independent classifiers and predictors are then combined. Regression, classification, ranking,

and user-defined prediction issues can all be solved by it (XGBoost, 2022).

According to research, machine learning boosting techniques can aid in the reduction of

model bias. The outcomes of the experiments demonstrate that the Extreme Gradient

Boosting technique does perform better in terms of prediction accuracy.

As ensemble learning techniques are considered to perform better than basic classifiers, a

gradient boosting classifier model has been constructed for this issue because it looked to be

the best fit given the importance of being unable to detect even a SQL Injection. Because SQL

injection involves a huge quantity of query datasets and when working with machine learning

needs large datasets for training and testing, just the machine learning section is used in this

study to discover SQL vulnerabilities. The website has two menus, the first default page

utilizes regular code to detect vulnerabilities, and the other page uses machine learning part

to detect SQL injection. For other (XSS, header vulnerabilities) injection detection, there is no

usage of machine learning part.

Bug Detection Using Artificial Intelligence and Cyber Security

31

6.3) Final Backend Coding

In starting of this coding did without machine learning detect vulnerabilities, so first will

starting explanation with normal coding (without use of machine learning algorithm) part and

after that explain with machine learning part. All required python and machine learning

libraries are imported at the beginning of coding like bs4, Beautifulsoup, flask, requests,

pandas, numpy, sklearn, joblib, pickle, scipy, hstack, os, sys, mechanize, and all. Flask is a well-

known, server-side, lightweight, modular, and popular python framework that is quite like

the Django framework. There can build the backend systems for own web apps using the

library of modules and functions provided by frameworks like flask. Flask features a few

benefits, including support for secure cookies, restful request dispatching, jinja templates,

and integrated unit testing (Khanna, 2020). Creates an instance of Flask. The name of the

current python module is __name__. __name__ is a convenient way to provide the app with

the location information it needs to set up some paths. Routes in flask are translated in to

python methods. Already created one route, the ‘/’ route. Here is used the route /sqliML,

route /clickjacking, and route /checkout so it needs to bind it to that all function. The output

of the function all that is shown in browser based on that use or need. After that initialize an

HTTP session and set the browser (TUtorial, 2021).

Figure 27: Flask and HTTP Session

Bug Detection Using Artificial Intelligence and Cyber Security

32

Defined one fatch_forms() function and given URL parameter in it. This function created to

fetch all forms from the HTML content from given URL. Then defined another

fetchformdetails() function and pass form parameter in function, using this function extracts

all possible useful information about an HTML form. In that first get the form action, get the

form method like post, get, etc., then get all the input details such as type, name, value and

all; and at last, put everything to the resulting dictionary.

Figure 28: Fetch Forms Details

Defined is_vulnerable() function with response parameter. A simple Boolean function that

determines whether a page is SQL injection vulnerable from its ‘response.’ In this function

created one errors dictionary and using for loop try to found error if find one of these errors

then it returns true. That means this function is determining whether a page is vulnerable or

not. This function is checking if there is any wrong SQL syntax or error in SQL syntax. It is

checking if there are enclosed quotations in string. It is also checking if quoted string is

properly terminated or not.

After that defined scanning_sqli_injection() function withurl parmeter, then declared two

empty variable. Add quote/double quote character to the URL and used predefined function

Bug Detection Using Artificial Intelligence and Cyber Security

33

is_vulnerable() with if…else…. Condition. Here used predefined empty variables one is use to

print message and one is use for checking and based on detection it print that related

message. Now test the form which has fetched using previous defined fetch_form() function

and fetchformdetails() function and then data body want to submit. Any input form that is

hidden or has some value, just used it in the form body and for that used “try” and “except”

method. All others except submit and with that use some junk data with special character

after that join the URL with the action (form request URL) so it check which method is used

like post or get. Using is_vulnearble() test whether the resulting page is vulnerable or not.

Figure 29: Test Vulnerability in Form without ML

Bug Detection Using Artificial Intelligence and Cyber Security

34

Figure 30: Result 1 of Vulnerabilities Detection Without ML Algorithm

Figure 31: Result 2 of Vulnerabilities Detection Without ML Algorithm

That kinds of same coding done for XSS vulnerability detection; and for XSS defined

submit_form() function and pass three parameters. Submits a form given form_details and its

data type are list which is a dictionary that contain form information. There is other two

parameter URL and value; and the data type of it is string. URL parameter will original URL

that contain that form; and value parameter will be replaced to all text and search inputs and

at the end returns the HTTP response after form submission. Same as SQL scanning part,

defined scanning_XSS function with one parameter for XSS vulnerability. Given a URL, it prints

all XSS vulnerable forms and returns true if any is vulnerable, false otherwise. End of the

function does not used break because need to print available vulnerable forms. The other

four vulnerabilities are header related which has X-Frame-Options, Strict-Transport-Security,

Bug Detection Using Artificial Intelligence and Cyber Security

35

X-Content-Type-Options, Content-Security-Policy. To test for a header vulnerability, you must

determine if you can change the Host header and still send your request to the intended

application. POST to /predict, means that add an element. In home1() function return the

flask and show which vulnerabilities detected from the given URL.

Now starting machine learning part for SQL injection detection in website. First, defined

preprocess() function with query parameter and inside that defined other three function

process(), combined_keywords(), and genuine() with different parameters. That related brief

explanation given at the end of “Compare ML Algorithms” part. Then, POST to /predictsqli,

means that add an element. Given query parameter is a string given to predict that it is SQL

injection or not. Here, also used fetch_forms() and fetchfordetails_url() functions to fetch

form. Then used “machanize.Browser()” which gives a browser like object to interact with

web pages. Before applying any query, it converting query to lowercase using “.lower().”

When did feature extraction part that time generated train_bow file and that file save it and

that file now use in this code. It is one of the trained files which is used at here for SQLi

detection. First open and load train_bow; then stacks the arrays in a sequence horizontally

and for that uses unigram_bow pre-generated file. Here, used XGBoost algorithm. First

loading the “saved_model.pkl” model using “.load()” function, then prediction the output

from the loaded model.

Figure 32: XGBoost Algorithm Apply to Detect SQLi

Bug Detection Using Artificial Intelligence and Cyber Security

36

As a result, it returns “predict.html” file; in that file written two statements related the SQL

query if site is secure then it shows “THE GIVEN QUERY BELONGS TO CLASS 0 MEANS THIS IS

NOT A SQL INJECTION QUERY” or site is vulnerable then it shows “THE GIVEN QUERY BELONGS

TO CLASS 1 MEANS THIS IS A SQL INJECTION QUERY.” Below given a website view and result.

Figure 33: Web Page of SQLi Detection with ML

Figure 34: Web Page Result of SQLi Detection with ML

Bug Detection Using Artificial Intelligence and Cyber Security

37

7) Chatbot

Instead of offering direct contact with a real human agent, a chatbot or chatterbot is a

software program that is used to conduct an online chat conversation using text or text-to-

speech. By automating conversations and interacting with clients through messaging systems,

chatbots are a type of software that may assist customers (Wikipedia, 2022). Here created

vulnerability detection web application but every user does not know about injection, that

related risk and prevention technique. This chatbot give that related information to users.

The purpose of this chatbot, customer service representatives are not available 24 hours a

day, 7 days a week to help customers with their problems; but chatbot give them answer

24/7. It analyses chats using natural language processing and extracts the user’s purpose

utilizing information comparable to the user’s likes. First examine how to begin a chatbot

discussion and how to progress the conversation by selecting or querying via several

categories based on user needs. It is a project based on the “Neural Network” technique. It

necessitates the use of natural language processing: tokenization, entity recognition, and

intent extraction NLP approaches. In coding section, there are one “bse.html” file where

written coding for chatbot design. Three main python file is “chat.py”, “app.py”, and

“train.py”. Neural Network, tokenization, and bag of words coding do in “chat.py” python file.

Using “tag” and “pattern” train the chatbot; which is defined in “intents.json” file. And

“app.py” is main file in that used flask; get response from user and based on that give answer;

that related coding done in it.

Bug Detection Using Artificial Intelligence and Cyber Security

38

Figure 35: Coding of intents.json File

Figure 36: Chatbot

Bug Detection Using Artificial Intelligence and Cyber Security

39

8) Conclusion

In this thesis, created one website to detect different vulnerabilities in various website using

that URL. In that web application used two types of coding to detect vulnerabilities one

without machine learning and other with machine learning; both parts working properly.

Machine learning algorithms are used to solve the SQL injection detection problem.

Compared different machine learning algorithms and decided to use XGBoost algorithm

because Extreme Gradient Boost machine learning model provides results with an accuracy

of is 89.64%. As a result, XGBoost from ensemble learning is selected to be implemented on

the SQL injection problem. On the webpage has one chatbot; in that uses Neural Network

technique. That chatbot gives information about different vulnerabilities information, that

related risk and prevention technique.

Bug Detection Using Artificial Intelligence and Cyber Security

40

9) Limitation and Future Work

In this research, created web application to detect vulnerability using machine learning

algorithm but ML part only used to detect SQLi vulnerability. ML section did not use for other

injection detection because that vulnerabilities have not large amount of data and ML only

work with huge number of datasets. If in future collect large number of datasets for other

injection then it is possible to detect other vulnerabilities using ML. But for some

vulnerabilities only need single or few scripts and for that type of vulnerabilities is not possible

to make large dataset.

Bug Detection Using Artificial Intelligence and Cyber Security

41

References
Adamjee, U., 2020. Introduction to NLTK library in python. [Online]

Available at: https://python.plainenglish.io/introduction-to-nltk-library-in-python-6fa729b54ad

Adil, 2021. Learning Never Ends. [Online]

Available at: https://learningneverendstech.com/2021/11/24/_layout-cshtml-file-master-page-in-

asp-net-

mvc/#:~:text=_Layout.cshtml%20File%20In%20ASP.Net%20MVC%20Application%20When%20you,c

an%20apply%20to%20the%20views%20of%20the%20application.

Anon., 2011 - 2021. JavaTpoint. [Online]

Available at: https://www.javatpoint.com/machine-learning-random-forest-algorithm

Anon., 2011 - 2021. JavaTpoint. [Online]

Available at: https://www.javatpoint.com/logistic-regression-in-machine-learning

Anon., 2011 - 2021. JavaTpoint. [Online]

Available at: https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm

Anon., 2015 - 2022. python tutorials. [Online]

Available at: https://pythonspot.com/nltk-stop-words/

Anon., 2022. .NET Core vs .NET Framework. [Online]

Available at: https://www.interviewbit.com/blog/net-core-vs-net-framework/

Anon., 2022. TutorialsTeacher. [Online]

Available at: https://www.tutorialsteacher.com/mvc/mvc-model

Asra Kalim, C. K. J. D. S. T. D. R. S., February 2020. A Framework for Web Application Vulnerability

Detection. International Journal of Engineering and Advanced Technology (IJEAT), 9(3), p. 544.

Brownlee, J., 2021. Machine Learning Mastery. [Online]

Available at: https://machinelearningmastery.com/random-oversampling-and-undersampling-for-

imbalanced-classification/

developers, s.-l., 2007 - 2022. scikit learn. [Online]

Available at: https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html#:~:text=

The%20formula%20that%20is%20used%20to%20compute%20the,the%20document%20set%20that

%20contain%20the%20term%20t.

Edward, 2019. stack overflow. [Online]

Available at: https://stackoverflow.com/questions/57346982/what-does-model-exactly-do

Fardeen, A., 2021. Generating Unigram, Bigram, Trigram and Ngrams in NLTK. [Online]

Available at: https://machinelearningknowledge.ai/generating-unigram-bigram-trigram-and-ngrams-

in-nltk/

Farooq, U., 2021. Ensemble Machine Learning Approaches for Detection of SQL Injection Attack.

Technical Journal, Volume 15, pp. 112-120.

Ganesan, K., 2021. Opinosis Analytics. [Online]

Available at: https://www.opinosis-analytics.com/ai-glossary/precision-and-recall-machine-learning

Bug Detection Using Artificial Intelligence and Cyber Security

42

Havannavar, R., 2021. [Online]

Available at: https://medium.com/@rohanhavannavar/predict-if-the-sql-injection-query-can-get-

access-to-database-or-not-using-machine-learning-2c9303024da3

JavaTpoint, 2011-2021. JavaTpoint. [Online]

Available at: https://www.javatpoint.com/fit-transform-and-fit_transform-methods-in-python

Khanna, M., 2020. python Flask Tutorial - Getting Started with Flask. [Online]

Available at: https://scoutapm.com/blog/python-flask-tutorial-getting-started-with-flask

Kumar, G. S., 2021. CountVectorizer in Python. [Online]

Available at: https://suresh-analytics.medium.com/countvectorizer-in-python-2643b8c69453

Markham, K., 2021. stackoverflow. [Online]

Available at: https://stackoverflow.com/questions/27697766/understanding-min-df-and-max-df-in-

scikit-countvectorizer

Microsoft, 2022. using directive. [Online]

Available at: https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-

directive

Mishra, S., Spring 5-23-2019. SQL Injection Detection Using Machine Learning, San Jose, CA, U.S.A.:

San Jose State University.

Ng., R., 2022. Ritchie Ng. [Online]

Available at: https://www.ritchieng.com/machinelearning-f1-score/

Pedamkar, P., 2022. EDUCBA. [Online]

Available at: https://www.educba.com/decision-tree-algorithm/

Ross, K., Spring 2018. SQL Injection Detection Using Machine Learning Techniques and Multiple Data

Sources, San Jose, CA, U.S.A.: San Jose State University.

Singh, J., 2019. C#Corner. [Online]

Available at: https://www.c-sharpcorner.com/blogs/why-should-and-should-not-we-use-net-

core#:~:text=Advantages%20of%20.NET%20Core%201%20.NET%20Core%20is,Core%20is%20much%

20faster%20compared%20to%20.NET%20Framework.

TUtorial, P., 2021. Flask Tutorial: Routes. [Online]

Available at: https://pythonbasics.org/flask-tutorial-routes/

Vogel, L., 2022. Introduction to Java Web Development - Tutorial. [Online]

Available at:

https://www.vogella.com/tutorials/JavaWebTerminology/article.html#:~:text=A%20%EE%80%80Jav

a%20web%20application%EE%80%81%20is%20a%20collection%20of,%EE%80%80Web%EE%80%81

%20Standards.%20Standard%20%EE%80%80Java%EE%80%81%20technologies%20are%20defined%

20

Wikipedia, 2022. Chatbot Wikipedia. [Online]

Available at: https://en.wikipedia.org/wiki/Chatbot

XGBoost, 2022. GeeksforGeeks. [Online]

Available at: https://www.geeksforgeeks.org/xgboost/

