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Abstract 

Traffic congestion has always been a major issue in urban environments and is a huge 

contributor to carbon dioxide emissions and pollution. Solving this issue could reduce such 

pollutants as well as increase the productivity of the general population, reduce accidents, and 

bring down costs to resolve traffic-related problems. With the rise in artificial intelligence (AI) 

and deep Q-learning (DQN). More methods are becoming increasingly available for 

researchers to determine a data-driven approach to managing intersections controlled by traffic 

lights. Using tools like the simulation of urban mobility (SUMO), much research has been 

conducted into the suitability of using a reinforcement learning (RL) approach to control traffic 

light timings and traffic flow. Though positive outcomes have been reported, there seems to be 

a lack of consideration for the use of DQNs in a real-world scenario with the additional 

constraint of traffic cameras. This study aimed to implement a system that is adaptive to a real-

world road infrastructure gathered from OpenStreetMap (OSM). Additionally, the impact of 

including lane area detectors with limited view distance to monitor queue length was also 

considered. The methodology includes a comparison of using a DQN with an increasing 

amount of hidden layers named MLP-0, MLP-1, and MLP-2 with the addition of a baseline 

fixed-timing (FT) approach. For each, results were gathered from 50 episodes consisting of 

3,600 simulation time steps which is equivalent to 1 hour. Average time loss (ATL), average 

waiting time (AWT), vehicle count (VC), and episode rewards (ER) were the performance 

outcomes recorded and were logged using tensorboard. The results showed that MLP-2 

reduced ATL and VC by 16.56% (𝑝 < 0.05) and 11.26% (𝑝 < 0.05) — respectively, whilst 

MLP-0 reduced AWT by 19.18% (𝑝 < 0.05). MLP-2 also had the largest episode rewards of 

4084.75 amongst all the DQN models tested. To conclude and in comparison to the existing 

literature, it seems that placing an additional constraint with lane area detectors and using real-

world data with minimal modifications — leads to a less performant outcome. It is the hope 

that this research can help guide future studies in considering real-world applications and 

scenarios for traffic light management systems. 
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Introduction 

(adapted from previous work, Lau 2022) 

 

Through rapid urbanisation, traffic congestion has become a common issue in cities around the 

world. Before the outbreak of COVID-19, annual vehicle miles in the UK were steadily 

increasing — reaching a peak of 356.5 billion miles in 2019 (Department for Transport 2021). 

This presents a new challenge for the road and transport authorities who are overseeing the 

management of traffic flow to increase throughput and minimise incidents across the network. 

 

With the rise of machine learning (ML) capabilities in recent times, many questions are being 

asked about the use and potential of artificial intelligence (AI) in critical infrastructures — like 

in this instance — transport. Much of the previous research seemed to agree that if some AI 

were to be implemented to solve congestion issues, it would typically be at the intersections 

controlled by traffic lights. Additionally, it is common to see reinforcement learning (RL) 

algorithms for these use cases due to the complexity and irregularities of the system that a 

typical artificial neural network (ANN) would not be able to solve (Sugiyama 2015). 

 

Much research has been conducted in assessing the suitability of a deep Q-learning network 

(DQN) on road-traffic infrastructure and how it may be able to achieve greater throughput at 

intersections. However, there is a gap in bridging the theoretical and the implementation of 

such a system in the real-world. Updating or building infrastructure like road networks needs 

much planning, funding, and time. Hence, it is crucial to prove whether such a system would 

behave as expected in real-world applications. Some of the research has considered these 

scenarios, for instance, the multi-agent approach of using neighbouring intersections and 

importing real street maps to train the model (He et al. 2021, R et al. 2022). However, they’ve 

failed to recreate a situation where an agent has limited visibility — meaning vehicles that are 

within the range of an intersection can be considered. It may not be possible or feasible to know 

the exact location of all vehicles in a road network. The veracity of the data collected depends 

on the placements of cameras and internet of things (IoT) devices which usually can be 

conveniently placed at the intersections. Briefly, this project aims to train an effective DQN 

that considers the vehicle detection range of intersections in a larger network using lane area 

detectors. Doing so could help set the stage for future research and implementation of smart 

traffic signalling or management systems. 
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An ANN is made up of multiple layers of neurons which are inter-connected between each 

layer. There are also different types of layers where each would be more suited to a particular 

type of input or purpose. For instance, each neuron in a dense layer is connected to all preceding 

neurons in the previous layer “Figure 1”. Its benefits are that it is structurally agnostic — 

meaning that no assumptions about the inputs are required. Also, as it is connected to all the 

neurons in the previous layer, it can learn from all the given features. However, a drawback is 

that it is computationally expensive due to the high number of parameters present in these 

layers (Guresen and Kayakutlu 2011). ANN is an umbrella term, and this is one such example 

of a multi-layer perceptron (MLP). Another type is a convolutional neural network (CNN) 

which is typically used for image processing, classification or any purposes where local spatial 

correlation is important — meaning that distances in your data matter (O’Shea and Nash 2015). 

 

Figure 1 Example of an MLP with dense layers 

 

To further understand the inner mechanics of an ANN, consider the following example of a 

perceptron which consists of a singular neuron, one output, has 𝑛 number of inputs and is used 

in supervised machine learning “Figure 2”. Supervised machine learning is the process of 

training a model with a set of input data and its known labels. For instance, training with a set 

of images of different types of vehicles and trying to map its prediction to correctly identify if 

it is a motorcycle, bus, van, etc.  The inputs of a perceptron are key traits or features of the data 

that the model will learn from — represented as I1 to I4. For any prediction to be useful, some 

mathematical operations are performed on the inputs to emphasise the importance of certain 

features. This is achieved through finding the product of the input value and its weight (W1 to 

W4) which is randomly initialised. These adjusted values are then fed through an activation 

function which produces a transformed output which will determine if the neuron will be 
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activated if it surpasses a certain threshold. Like in a binary classifier where the threshold could 

be 0.5, a higher value would activate the neuron and give its respective input the corresponding 

classification (Rosenblatt 1958). Elaborating on activation functions, these are mathematical 

operations that take an input value and produce an output after passing it through a function 

like sigmoid, rectified linear unit (ReLU), or tanh “Figure 3”. The neural network learns 

through a method called backpropagation. Optimisers like Adam which is derived from the 

name adaptive moment estimation — and is a stochastic gradient descent algorithm used to 

update the network's weights iteratively in an attempt to improve the accuracy of its predictions 

(Kingma and Ba 2017). 

 

Figure 2 Example of a perceptron 

 

 

Figure 3 Sigmoid and ReLU activation functions 
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Whilst the mechanics of an ANN closely resembles the human brain, RL can be seen as an 

equivalent representation of learning through trial and error — much like training a dog. An 

agent, which can be seen as the ‘Player’ or ‘Controller’, is used to interface with a given 

environment and will learn which actions yield the largest reward before storing the experience 

for later recall “Figure 4” (Wells and Bednarz 2021). 

 

Figure 4 Reinforcement learning concept 

 

Another important concept in the field of RL is Q-learning. Simply, this method of learning 

utilises a Q-table to maintain a record of values that represents the most viable actions taken 

for a given state. Further elaborating, a state is a snapshot of the environment — for instance, 

a frame in a video game would be a state. The values inside a Q-table are also known as Q-

values. The goal of this algorithm is to maximise the rewards gained from each step and 

subsequently improve the Q-values through training the agent with the environment over a set 

number of iterations — more commonly known as episodes. The environment will reset at the 

end of each episode but the data within the Q-table will persist over the course of training. 

Firstly, the agent will initialise and pick a random action to begin the training. After, it will 

assess the change in the environment and ascertain a reward relating to the effects of its action 

on the environment — or state-action. From this, it calculates the values in the Q-table for that 

state and repeats the above for the rest of the episode. From the second episode onwards, the 

agent would have populated the Q-table with the initial sets of values. Following onwards, it 

will now take the actions with the largest Q-value. Each episode will reinforce the agent’s 

understanding of the environment as more successful actions for a given state — will yield 

higher Q-values over the course of the training “Table 1” (Fan et al. 2020). 
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Table 1 Example Q-table with 4 actions and N states (shaded are selected actions) 

 Action 1 Action 2 Action 3 Action 4 

State 1 0.11 0.25 0.73 0.29 

State 2 0.64 0.83 0.13 0.36 

State 3 0.56 0.89 0.68 0.53 

State 4 0.64 0.54 0.17 0.18 

State 5 0.53 0.12 0.76 0.10 

State N … … … … 

 

However, it is easy to see why a tabular approach with Q-learning could pose an issue for larger 

and more complex environments. Its simplicity is an advantage if there are a finite number of 

states, but it quickly becomes computationally expensive and inefficient when the duration is 

unknown. In such a scenario, a possible solution is to take an approach that approximates the 

Q-function or curve — meaning that it is viable to train the agent using ANNs to generate the 

Q-values. Though this resolves the issue, it raises numerous challenges and increases the 

complexity of the algorithm. For instance, the agent would need a replay memory which stores 

previous experiences including past states, the reward gathered, the action that was taken, and 

the following state. These experiences will be sampled by the agent for training. Additionally, 

the use of ANNs would require more hyperparameters and tuning to optimise the performance 

of the model — further increasing the complexity. 

Background 

(adapted from previous work, Lau 2022) 

 

Understanding the current literature surrounding the topic of using DQNs in traffic light 

management systems required a systematic approach due to the vast number of studies existing 

in this field. The following was performed to increase the quality of the literature review — 

subsequently the accuracy and relevance of this research. 

 

Finding articles 

The research question and database search criteria “Table 2” were formulated following PICO 

(problem, intervention, comparison, and outcomes). In addition, the PRISMA framework was 

implemented to guide the background research and literature review. Initially, search results 

were obtained and exported as a comma-separated values (CSV) file which was imported into 

a resolution tool named Rayyan. Duplicates were detected and removed, followed by the first 

pass of exclusions through abstract reading; then, the second pass was by reading the full text. 
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This process gathered initially 945 but following the removal of duplications and exclusions 

via title or abstract — 74 articles remained. Finally, after full-text exclusions, the remaining 

count of articles was 53. 

 

Table 2 Search criterion 

Databases IEEE Xplore 

 

Search terms "traffic" OR "traffic light" 

AND 

"congestion" OR "intersection*" OR "junction*" 

AND 

"reinforcement learning" OR "deep q-network" OR "dqn" OR "machine learning" OR "deep learning" 

AND 

"management*" OR "reduction" OR "control" 

 

Free-text version ("traffic" OR "traffic light") AND ("congestion" OR "intersection*" OR "junction*") AND ("reinforcement 

learning" OR "deep q-network" OR "dqn" OR "machine learning" OR "deep learning") AND ("management*" 

OR "reduction" OR "control") 

 

 

Inclusion and exclusion criterion 

The PICO framework was used to identify articles that are relevant and within the scope of the 

project. From this, inclusion and exclusion criteria were created as per “Table 3” to further 

refine search results. No criteria for comparison were created to broaden the scope of the search 

due to uncertainty as to which comparators were used. 

  

Table 3 PICO framework for inclusion/exclusion criterion 

 Include Exclude 

Problem Traffic management at nodes/junctions Not traffic related 

Intervention Reinforcement and/or deep learning - 

Comparison - - 

Outcomes Reduce congestion, better flow, or less incidents - 

 

Current literature 

From the included articles, it appears that much of the research has been conducted using 

Simulation of Urban Mobility (SUMO) for various questions regarding real-world data, 

single/multi-intersection problems, and optimisations in the algorithm (Liu et al. 2017, Wu, 

Kong, et al. 2020, Joo and Lim 2021). Also, common performance measurements across the 
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studies include the waiting time, throughput, queue length, carbon dioxide emission, noise 

pollution, and fuel consumption (Liu et al. 2017). 

 

Much of the research also described and implemented the Markov Decision Process (MDP) 

which is a standard mathematical model for Q-learning and as discussed previously in the 

introduction (Rosyadi et al. 2016, Garg et al. 2018, Tan et al. 2020). Simply, the model 

represents the interaction of the agent depending on the state and reward from a given action 

performed in an environment. Hence, Q-learning can be expressed as below where 𝑠 is the 

state, 𝑎 is the action, 𝛼 is the learning rate, 𝛾 is the discount factor, and 𝑅𝑡 is the reward at 

the time 𝑡. The expression produces the Q-value at time 𝑡 for the given state and action, 

𝑄(𝑠𝑡 , 𝑎𝑡) is the value for the current state-action pair, and 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) is the estimated 

maximum reward for the next action — whilst 𝛾 applies a discount to this value (Liu et al. 

2017). 

 

𝑄𝑛𝑒𝑤(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼(𝑅𝑡 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠𝑡 , 𝑎𝑡))  

 

As discussed, DQNs approximate this function using ANNs. The input of a DQN will be a 

representation of the current state, like in this case, the number of vehicles on the road or at the 

intersection. The information then propagates forward through the ANN with the output layer 

corresponding with the action space where the agent will pick the action with the highest Q-

value to perform (Chen and Kulla 2019). After taking the action, the agent will ascertain the 

reward of that particular state-action pair and the new state before storing it in the replay 

memory. After, the agent will sample the memory with the batch size which is a 

hyperparameter configured prior to training. This becomes the input for the ANN using 

backpropagation to adjust the weights between neurons to improve the accuracy of its future 

predictions. 

 

It is also common to see 2 neural networks used for a DQN agent. They are both the same in 

structure but differ in purpose. Q-learning uses an exact value function that calculates the Q-

value at every step the agent takes as previously discussed. Since DQNs are function 

approximators and the weights in the neural network are randomly initialised, their predictions 

can be wildly different and unstable. Additionally, the network is being trained on every single 

timestep — not allowing enough iterations for the adjustments to converge towards the target 
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value. Hence, introducing a second network named the ‘target network’ can help resolve this 

issue. Simply, it freezes the target value to allow the first ANN to converge towards it for 𝑁 

time steps before syncing the weights — after which the process repeats. Consider the 

following example in “Figure 5” and “Figure 6”. With the aid of the target network, the 

predicted next state values will not deviate substantially — allowing the other network to 

converge towards this value prior to syncing the weights between these two networks. 

 

Figure 5 DQN failing to converge to target value with no target network 

 

 

Figure 6 DQN converging to the target value using a target network 

  

 

Though the problem statement of the included articles is the same — being to improve traffic 

flow at intersections. Many different approaches have been observed for optimising models 

and objective functions. For instance, one such case utilised a CNN with image data from a 
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custom simulation to predict to next best action. The model was basic and it consisted of 

multiple convolution layers followed by a fully connected output layer (Garg et al. 2018). 

Contrastingly, other authors have opted for a more rounded approach — considering multiple 

metrics for their agent. An example would be to combine the velocity and position matrices 

into a 2-channel image which will become the input for a CNN with ReLU activation functions. 

Additionally, queue lengths can be represented as a matrix of lanes and roads which again can 

be handled by a CNN. Pedestrians and traffic light phase vectors can be passed into a fully 

connected layer before being concatenated with all the results from the computations of the 

above states. Then, a long short-term memory (LSTM) network can finalise the combined 

states and formulate an action (Wu, Zhou, et al. 2020). A benefit of a more complex network 

is the holistic approach to the environment’s states — considering multiple aspects of the 

simulation could add to the practical applications of the research. 

 

With regards to the other types of ANNs as per the above, each has its own benefits and 

drawbacks which ultimately determine their suitability for certain use cases. Starting with 

CNN, it is common to see these types of networks used for image-based learning due to their 

robustness in detecting unique features in 2-dimensional data. It is important to note that they 

are not limited only to images, but rather any 2-dimensional representation of features. For 

instance, the current position and velocity of cars on a road network can be represented as a 

matrix. Key components of convolutional layers in a CNN include the filter, data, and feature 

map. As per “Figure 7”, the filter is defined with dimensions 2x2 and initialised with kernel 

values that will perform multiplication on the input. In the first step, the following was 

performed, 1(1) + 0(5) + 0(3) + 1(4) to attain a value of 5 on the feature map. After, the 

filter is shifted right by a parameter called stride which is 1 in this case. The following steps 

will repeat the same calculations above. The final step will gather a completed feature map of 

the input with reduced dimensions (O’Shea and Nash 2015). CNNs can have multiple 

convolution layers to create multiple feature maps where the model can detect important 

information in each layer. Some drawbacks of using a CNN include the requirement of large 

datasets to thoroughly improve the validity of the feature map. Furthermore, the orientation 

and position of the data cannot be encoded. Solutions to these issues exist such as data 

augmentation where a set of images/data is duplicated but transformed randomly in orientation 

and/or position to add variety and increase the amount of training data (Han et al. 2018). 
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Figure 7 Example of how convolution works 

 

 

Shifting the focus to the mechanics of LSTMs, a high-level overview would describe 4 key 

components of an LSTM cell —the forget gate, input gate, output gate, and the cell state as per 

“Figure 8”. Multiple cells are created sequentially where 2 sets of states are passed to 

connecting cells known as hidden states and cell states. Each gate contains an activation 

function like a sigmoid or tanh function. From the beginning, the previous cell’s hidden state 

and the current cell’s input are combined into a new hidden state. The forget gate decides how 

much of this new combined hidden state should be forgotten using a sigmoid function. A value 

tending towards 1 means that the cell remembers more and vice versa. The output of the forget 

gate is then multiplied by the cell state to adjust its value. After, the new hidden state passes 

through the input gate which transforms the value separately through a sigmoid and tanh 

function before multiplying the two together to produce the output for this gate. This output is 

then summed to the cell state. The final output gate takes the processed cell state and transforms 

it using a tanh function; additionally, it also takes the new hidden state and passes it through a 

sigmoid function — where both transformed values are multiplied together to create the hidden 

state for the following cell (Wang 2017).  
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Figure 8 States and gates of an LSTM cell 

 

 

There is a split between the articles about the data or method adopted for the simulation. Some 

chose to use artificially created networks that are rigid in layout; for instance, a 3x3 grid of 4-

way intersections (Shinde et al. 2021). This method simplifies the scenario and can assist in 

understanding the core principles behind a road network that is optimal and making 

computations simpler. However, the trade-off would be its reflection on real-world use. The 

contrary involves importing real map data into SUMO and running the simulation with pre-

defined parameters like the number of vehicles and their type. This could be achieved by using 

one of SUMO’s first-party tools called osmWebWizard.py which uses OpenStreetMap (OSM) 

in a custom graphical user interface (GUI) to crop out areas to generate the simulation network 

(Liu et al. 2017, OpenStreetMap 2022). An example of a multi-intersection network that is 

commonly used by authors consists of numerous nodes that are 4-way intersections. This is 

due to the notion that generally, the most throughput of traffic occurs at these larger 

intersections (R et al. 2022, Wang et al. 2022). Hence, they have a greater influence on the 

region’s congestion rate which typically has more cameras and IoT devices to monitor its status 

— allowing for more data to be gathered. 

 

OSM provides accurate geographical data for websites, apps, and software — which is 

community driven and built by local mappers, geographic information system (GIS) 

professionals, and engineers. It has many partners like University College London (UCL). Its 

purpose is to emphasise local knowledge where contributors submit global positioning system 

(GPS) data, aerial imagery, and low-tech field data relating to roads, trails, shops, stations, and 

more (OpenStreetMap 2022). Furthermore, OSM is registered under the Open Data Commons 
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Open Database Licence (ODbL) and their documentation is registered with the Creative 

Commons Attribution-ShareAlike 2.0 license (CC BY-SA 2.0). Hence, researchers and 

engineers can freely use their software as long as it is credited. OSM’s existing purpose from 

the current pool of literature and for this project’s use — is as a tool for SUMO to generate 

simulation data where the user can configure the traffic flow factors, the area of the road 

network to simulate, and the types of vehicles in the simulation “Figure 9”. 

 

Figure 9 Example of an OSM SUMO tool named osmWebWizard.py 

 

 

Previous authors have outlined some key configurations for the hyperparameters used in DQNs 

for traffic control “Table 4”. Starting with epsilon, this represents the starting value of the 

epsilon-greedy strategy for agents. Simply, it is a value that decays over the course of the 

episode — increasing the likelihood that the agent will exploit the current model and replay 

memory to take a non-random action (Dabney et al. 2020). Secondly, gamma is a discount 

factor for rewards. Simply, it constitutes how much the agent cares about rewards in the future 

compared to ones in the immediate term. It ranges between 0 and 1 where 0 indicates the agent 

only cares about immediate rewards and chooses the corresponding actions to achieve this 

(François-Lavet et al. 2016). Replay size and batch size are configurations for creating and 

interacting with the replay memory. Replay size defines the total number of experiences that 

can be stored in the agent’s memory whilst the batch size is how many experiences to sample 

for training. Having a larger replay size can result in a more stable DQN but would require 

more computational resources. 
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Table 4 List of hyperparameters and their description 

Epsilon The value used in the epsilon greedy strategy. 

Gamma This is a discount factor for reward.  

Replay size The fixed size of the replay memory working in a queue data structure. 

Batch size The number of experiences to sample from the replay memory to train with. 

 

As for parameters, different values of traffic density were observed among the included articles. 

Generalising a few, it is common to see classification to be graded as low, medium, or high 

levels of density where one such study reportedly used 10.67, 13.33, and 16 units per second 

— respectively (Pang and Gao 2019). Similarly, for the model’s hyperparameters, many 

variations were gathered from the current pool of literature. Batch sizes ranged from 16 to 64, 

learning rates were between and around 0.0001 and 0.0005, whilst replay memories were 

around 10,000 to 20,000 (Liu et al. 2017, Pang and Gao 2019, Wu, Zhou, et al. 2020). The 

only common similarity amongst most articles was the discount rate of 0.99. 

 

In general, most articles support the use of RL and DQN-based models to manage traffic signals 

at intersections over traditional fixed timing (FT) operations. Some reported results were 

decreased travel times and decreased average stop time during peak hours of 38.97% and 

62.38% — respectively (Ge 2020). Other studies have also considered additional constraints 

that could affect traffic flow at intersections like pedestrians. One such article used data from 

neighbouring nodes as well as its own to train an agent — resulting in an improvement of 

16.7% for waiting time during high pedestrian scenarios compared to other multi-agent 

approaches (Liu et al. 2017). In contrast, some authors indicated that though DQN is an 

effective method, it may not be the best. For instance, a deep deterministic policy gradient 

(DDPG) was shown to have more improvements. Simply and without going into detail as that 

would exceed the scope of this research, it consists of a critic model which predicts the Q-value 

and an actor model which determines which action to take. It was shown that under low, 

medium, and high traffic density scenarios, the average delay time for DDPG was 20%, 17%, 

and 10% lower compared with a DQN alternative — respectively (Pang and Gao 2019). 

 

Some studies have also identified the limitations of using SUMO and DQNs. A common 

practice to transform data into observation spaces will be to represent the network as a matrix. 

The values within could represent the occupancy of a vehicle, its velocity, or any attributes 

associated (Pang and Gao 2019, Wu, Zhou, et al. 2020, Shinde et al. 2021). Hence, more 

computing resources will be needed for training larger networks. Regarding SUMO, not all 
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scenarios are realistically represented — especially collisions. The default setting for handling 

collisions is to teleport the vehicles to the next edge on its route with additional settings to 

instead throw a warning, do nothing, or remove both vehicles from the simulation (Garg et al. 

2018, SUMO 2022). 

Methods 

Key objectives include building an RL model that interacts with SUMO using its traffic control 

interface (TraCI) API. Additionally, the simulation was performed using data from OSM to 

emulate existing road networks. Taking a different approach to some current literature, 

intersections in this project were isolated — meaning that it did not consider the states of 

neighbouring intersections. The rationale for this was two-fold. Firstly, this reduced the overall 

simulation complexity and training of the models. Secondly, being independent of a larger 

network could potentially generalise the model in a scenario if one or more neighbouring nodes 

were broken. Hence, the intersection takes the best action for itself regardless of the 

surrounding intersections. Another benefit to this method was that if it were to be deployed in 

a production environment, the model behaves continuously rather than in a localised manner. 

Simply, the model will not be specific to a certain area — unlike in the case where it has been 

trained using a region of a global network (Liu et al. 2017). 

 

The methodology of the experiment will include a comparison of key performance metrics for 

different variants of the ANN implemented for the agent. This has deviated from the original 

project plan which originally was interested in the performance of the agent at different traffic 

flow rates. The rationale for this change was that the traffic flow used was based on real data 

gathered from local authorities — with the project also taking a different approach to multi-

intersection problems. Hence, it was more beneficial to assess the suitability of this DQN and 

its implementation with different layers and structures. These results were also compared to a 

control situation — the FT approach for traffic lights where it used its default intervals gathered 

from OSM. 

 

The hypothesis for this project expected a negative outcome of the artefact across the metrics 

in comparison to existing research; however, a positive effect was anticipated when compared 

to the traditional FT approach for traffic lights. The belief behind this was due to the additional 

constraints placed on the simulation with reduced detector ranges. Though no human-related 

data was required — ethical clearance was also attained “Appendix A”. 
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State 

Lane area detectors were placed at every controlled intersection in the incoming direction using 

SUMO’s first-party tool netedit “Figure 10” which is a GUI for creating or editing a road 

network. These lane area detectors were either 15 or 20 meters depending on the length of the 

road.  

 

Figure 10 SUMO’s netedit tool 

 

 

Each detector was named using the convention where the intersection name was joined with a 

lane identifier. This identifier described the direction and position of the lane with respect to 

its position in the intersection. Working from the most westerly incoming direction, each road 

(or ‘edge’) was labelled with a number — incrementing as it rotates clockwise about the 

intersection. Simply, westerly roads were labelled as 1, northernly as 2, easterly as 3, and 

southernly as 4. Similarly, for each lane within a road, it was given a sub-label denoting its 

position starting from the left-most lane “Figure 11”. For example, the second lane of the most 

northernly incoming road for intersection GS0001 will have an identifier of GS001-2b. 
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Figure 11 Example of lane area detector identifier convention 

 

 

Using these identifiers, the artefact can observe the current state of the environment by using 

the TraCI API. This returns a count of all vehicles in the given range of each detector. The total 

queue length of the intersection is simply the sum of all detector counts. The state used for the 

agent is also represented as a vector of the queue length for each lane. For example, 5 lane area 

detectors will have a vector that contains 5 values representing the queue length. 

 

Action 

To retain the realism of the simulated road network, the original number of active phases the 

intersections have were not changed. Instead, as discussed later, each agent will dynamically 

instantiate ANNs with the correct number input and output space that are unique to that 

intersection. Unlike the states, implementing actions in the agent was much simpler as all cases 

can be handled directly from the TraCI API. As the agent was initiated, it looks for the traffic 

light programme as specified in the simulation configurations. It will return numerous phases 

with attributes like phase duration. The agent simply counts the number of phases available 

which formed the number of actions that the agent can take. 

 

However, there is a limitation with this project regarding its realism. To reduce the complexity 

and to keep the study within the scope of the research question, all yellow phases of traffic 

lights were removed. This was common amongst the current literature as considering these 
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intermediate phases would place additional requirements in the artefact’s implementation like 

realising a phase queuing process as these yellow phases would need to exist in between each 

active phase. For instance, before a light turns red, it will need to show the yellow phase — 

causing issues if the agent decides to execute a different phase during this time. 

 

Additionally, there is a minimum active duration for all phases as the agent will retain the 

selected action for at least 10 steps. The rationale for this is to prevent unrealistic behaviour 

where the agent would constantly switch phases between steps. In reality, drivers would need 

more than just a few seconds to react accordingly to the changes in the traffic light phase and 

need time to pass through the intersection. 

 

Reward 

Designing an expression to represent the reward for the agent at each time step required some 

consideration of the current state at the intersections. Nonetheless, a simple solution was 

proposed where the objective of the rewards function is to return positive feedback for an action 

that reduced the total number of vehicles queued at an intersection. For when there are no 

vehicles queued, the agent should receive a maximum reward. The alternative is for when the 

number of vehicles tends to a higher count, the reward should decrease exponentially to quickly 

discourage extremely inefficient actions. Having a reward between 0 and 1 achieved this where 

1 represented the largest reward possible and 0 indicated the action was extremely detrimental. 

In the end, the curve 𝑓(𝑥) =  1.5−𝑥 was created through trail-and-error with the base value 

whilst keeping the negative exponent to represent an inverse relationship with total queue 

length “Figure 12”. 
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Figure 12 Reward function 

 

Simulation 

As discussed, the tool commonly used for traffic simulation is SUMO. It is open-sourced with 

regular maintainers. It comes with many tools to help researchers and engineers configure a 

simulation environment that is tailored to their needs. Some of these tools have been discussed 

already; however, one that is worth mentioning would be the randomTrips.py helper module. 

This module generates a specified amount of random journeys and the number of vehicles to 

populate the simulation with over a given time period. 

 

In this project, the maximum simulation time is 3600 steps which correspond to 1 hour in 

seconds. The geographical location considered for this study was London around the 

coordinates 51.52040° N, 0.15955° W due to its high tendency of traffic and variety of roads 

and intersections. Using historical data from the Depart for Transport, the most recent daily 

motor traffic count in this area was 11,821 (Department for Transport 2021). Using this and 

adjusting with the assumption that this value mostly covers the working hours, 1,478 trips per 

hour formed the traffic flow rate used in the simulation. 

 

Replay memory 

A key requirement for memory is that it is limited and for older experiences to be pushed further 

back in their position until it is forgotten “Figure 13”. This can be achieved using a deque from 

the standard library collections — whilst organising key methods of the replay memory in a 

class “Appendix B”. Upon initialising the memory, a deque is created using the specified size. 

Additionally, the length of the class instance is represented as the length of the deque using a 
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‘magic method’. There are 2 public methods that can be called from this class. The push method 

adds a new experience to the deque in the form of a named tuple “Appendix C”. The latter 

method is used to sample the current collection in the memory with the specified batch size. 

For example, if 32 was the batch size, then that amount of experiences will be stochastically 

drawn from the current collection. 

 

Figure 13 Example replay memory with a size of 5 

 

 

Neural Networks 

Since the aim of this project is to consider a traffic scenario with the additional constraint of 

lane area detectors to count the number of vehicles at the intersections, the state can simply be 

represented as a vector of size 𝑁 where each item represents the lane with queue length 𝑙 — as 

previously introduced. This corresponds with the input layer of the ANN where the size will 

depend on the number of lane detectors situated at the traffic light intersection. 

 

Since the network only considers the above and should take an action based on the immediate 

state of the environment, an MLP was implemented due to its simplicity and needing less 

configuration. This decision was also made on the premise of what the literature revealed 

regarding the use of LSTMs in traffic light DQN experiments. Nonetheless, multiple MLPs 

were created to determine whether the number of layers and the neurons within would impact 

the DQN agent’s ability to manage traffic. It was decided that 3 variants of MLP would be 

tested subsequently named MLP-0, MLP-1, and MLP-2 where each respective variation has 

increasingly more hidden layers that generalise the data as it propagates forward through the 
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network. Between each layer, a ReLU activation function was used due to its simple but 

efficient nature where negative values are set to 0 before increasing linearly — which reduces 

the computation time (Hara et al. 2015). MLP-0 has 1 hidden layer of 128 neurons before the 

output layer “Figure 14”. MLP-1 has 2 layers of 128 and 64 neurons respectively “Figure 15”. 

MLP-2 has 3 layers with 128, 64, and 32 neurons in each layer respectively “Figure 16”. 

 

Figure 14 Example of MLP-0 

 

 

Figure 15 Example of MLP-1 

 

 

Figure 16 Example of MLP-2 

 

 

As previously eluded to, the agent consists of 2 ANNs — one of which is the target network. 

“Appendix D” demonstrates the implementation of this crucial flow in the project. Firstly, the 

agent samples from the replay memory a collection of past experiences before processing it 

into batches grouped by states, actions, rewards, and next states. Using the states, the first ANN 

was used to generate some predicted Q-values and only select ones that correspond with the 

action that was taken using the gather method. For clarity, let us call these predicted Q-values 

Q1. Next, the same is executed for the target network but instead with the next state values as 
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the input and selecting the largest Q-values that correspond with each state — calling it Q2. 

Further transformations were performed on Q2 to apply the discount rate 𝛾 and the rewards 

associated. Finally, the loss was calculated between Q1 and Q2 before executing 

backpropagation to update the weights of the first ANN. 

 

Main loop 

A custom command-line interface (CLI) was created to run the source code using argsparse 

with default values “Appendix E”. This allowed easy configuration when specifying 

hyperparameters for the agent, neural networks, or the simulation environment. Upon 

executing the main.py file, these configurations are logged to the terminal for confirmation. 

 

From “Figure 17”, the first task performed is to start the SUMO simulation through its TraCI 

API and save the initial starting state of the simulation for later recall. Following, each 

intersection controlled by traffic lights is fetched with its corresponding identifier and related 

data. For each of these intersections, an instance of the agent class is instantiated which contains 

all methods relating to state-action, rewards, neural networks, and replay memory “Appendix 

F”. 

 

The artefact now enters the next phase which includes the control loop. The first layer iterates 

through each episode as per the initial configuration through the CLI. Within this, another loop 

was utilised as the simulation stepper. This contains logic that will execute in each time step of 

the simulation — like state-action interactions, rewards calculation, saving to replay memory, 

and training. Since there are also multiple agents where each contains its own set of state-

actions and ANNs, another loop is needed to execute their methods for a particular time step. 

 

Within each time step, each agent observes the current state and determines an action using the 

epsilon-greedy strategy. Initially, it will explore its environment through taking random actions 

but as the episode progresses, it tends towards exploiting through utilising stored memories 

and the trained ANNs. Once an action has been taken, the simulation is stepped, and the agent 

will now observe the new state of the SUMO environment. It will evaluate how it performed 

with the previous action and calculate a reward. These results form the basis for an experience 

which is appended to the replay memory. After which, the agent will draw a sample for the 

memory to train with. This marks the end of the time step loop, and the flow will return to the 
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loop for each episode. The final tasks performed before starting a new episode include 

calculating performance metrics and logging to tensorboard if enabled. Following these 

executions, the simulation will reset using the initial starting state saved at the beginning of the 

runtime. After all episodes have been completed, and if specified through the CLI, the ANN 

models for each agent will be serialised and saved in the project directory. 

 

Figure 17 Illustrated main loop flow 

 

 

Evaluating model performance 

To understand the extent of the impact on traffic flow from using a DQN as the traffic light 

controller, key metrics were used and informed by the previous literature review. Starting with 
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average waiting time (AWT), this is the amount of average time the vehicle was involuntarily 

halted measured in seconds at the end of the episode. Measuring AWT provided insight into 

the severity of vehicles queuing at intersections. Likewise, average time loss (ATL) is 

calculated from vehicles driving at a slower speed than it was intended at the end of the episode 

— including AWT. This metric helped in understanding the lagging effects of poor traffic 

management as inefficient timings at intersections could have a cumulative effect on 

throughput. Vehicle count (VC) is simply the count of cars on the road network whilst episode 

reward (ER) is the cumulative total of rewards at all controlled intersections from every time 

step — essentially rating the performance of the DQN. 

 

All these performance outcomes were measured through interfacing with the simulation using 

SUMO’s TraCI API. As mentioned, outputs were recorded and logged at the end of each 

episode to tensorboard for storage and analysis. These results were compared with existing 

research to generate a discussion around the effectiveness of using DQNs in road infrastructure. 

Results 

All tensorboard data were imported into an IPython notebook (found in the submitted artefact) 

through the tensorboard API. Next, pre-processing occurred to select the relevant experiment 

and transform the data into their respective groups. Summary statistics were calculated for 

mean, quartile ranges, and standard deviation. Using the Shapiro-Wilks test, all the following 

results showed normal distributions; hence, an analysis of variance (ANOVA) was conducted 

for each performance metric. Rejecting the null hypothesis would imply that a significant 

difference was observed. 

 

Average time loss 

As per “Table 5”, “Figure 18”, and “Figure 19”, time loss for MLP-2 fluctuated substantially 

compared to all other runs (𝜎 = 90.43); however, it showed the lowest mean of 1355.47. 

Contrastingly, NO-AI showed the highest mean value of ATL being 1624.44 and having the 

largest maximum value of 1690.32. Performing the ANOVA revealed that the groups are 

significantly different to one another (𝐹 = 15686.27, 𝑝 = 3.93 ∙ 10−233). 
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Table 5 Summary statistics for average time loss 

 Mean SD Min 25% 50% 75% Max 

MLP-0 1549.88 57.37 1212.71 1534.72 1553.61 1577.78 1641.71 

MLP-1 1551.53 56.63 1245.06 1529.03 1552.54 1577.25 1661.41 

MLP-2 1355.47 90.43 1205.69 1297.08 1326.21 1408.87 1620.80 

NO-AI 1624.44 60.44 1260.24 1611.73 1636.53 1655.81 1690.32 

 

Figure 18 Line plot of average time loss vs. episodes 

 

 

Figure 19 Box plot of average time loss 
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Average waiting time 

From “Table 6”, “Figure 20”, and “Figure 21”, MLP-0 yielded the lowest mean across the 

groups but the highest deviation (𝜎 = 90.43) with maximum and minimum values of 256.28 

and 174.99 — respectively. MLP-1 and MLP-2 had higher mean values compared to MLP-0 

but less than NO-AI (159.75, 170.08, and 188.14 — respectively). A similar pattern was 

observed with the median of each group where MLP-0 had the lowest value, followed by MLP-

1, MLP-2, and NO-AI (149.95, 157.76, 169.83, and 193.33 — respectively). ANOVA revealed 

again a significant difference between the groups (𝐹 = 15686.27, 𝑝 = 3.93 ∙ 10−233). 

 

Table 6 Summary statistics for average waiting time 

 Mean SD Min 25% 50% 75% Max 

MLP-0 152.05 40.98 88.63 119.59 149.95 174.99 256.28 

MLP-1 159.75 34.60 74.19 146.85 157.76 181.72 228.02 

MLP-2 170.08 35.26 93.29 145.65 169.83 200.32 235.43 

NO-AI 188.14 26.22 130.20 168.29 193.33 204.90 243.28 

 

 

Figure 20 Line plot for average waiting time vs. episodes 
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Figure 21 Box plot for average waiting time 

 

 

Vehicle count 

As per “Table 7”, “Figure 22”, and “Figure 23”, it was observed that MLP-2 again showed the 

largest deviation (𝜎 = 26.91) but the lowest mean and minimum value (399.38 and 360.0 — 

respectively). Additionally, MLP-2 had a much larger interquartile range in comparison to all 

other groups. MLP-0 showed the second-best mean value of 440.12 followed by NO-AI and 

MLP-1 where both values are alike (450.06 and 450.50 — respectively). The same outcome 

was observed from the ANOVA where it implied the groups are significantly different from 

each other (𝐹 = 15686.27, 𝑝 = 3.93 ∙ 10−233). 

 

Table 7 Summary statistics for vehicle count 

 Mean SD Min 25% 50% 75% Max 

MLP-0 440.12 12.92 379.0 434.0 442.0 447.00 463.0 

MLP-1 450.50 13.01 383.0 447.0 451.5 458.00 474.0 

MLP-2 399.38 26.91 360.0 383.0 389.0 414.25 466.0 

NO-AI 450.06 12.12 389.0 446.0 451.0 456.75 469.0 
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Figure 22 Line plot of vehicle count vs. episodes 

 

 

Figure 23 Box plot of vehicle count 

 

 

Episode rewards 

Excluding NO-AI as rewards are not relevant to the FT approach, it was observed that MLP-2 

demonstrated the highest mean value compared to MLP-0 and MLP-1 (4084.75, 2044.09, and 

2926.75 — respectively). Again, MLP-2 displayed the largest deviation (𝜎 = 694.66) and 
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interquartile range as per “Table 8”, “Figure 24”, and “Figure 25”. The results from the 

ANOVA showed significant differences were observed between the groups (𝐹 = 9411.76, 

𝑝 = 7.23 ∙ 10−156). 

 

Table 8 Summary statistics for episode rewards 

 Mean SD Min 25% 50% 75% Max 

MLP-0 2044.09 507.01 1485.36 1886.41 1991.33 2089.21 5367.29 

MLP-1 2926.75 351.50 1835.32 2763.24 2933.40 3090.48 4300.40 

MLP-2 4084.75 694.66 2269.03 3712.61 4366.30 4574.43 5134.87 

 

Figure 24 Line plot of episode rewards vs. episodes for all DQN models only 
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Figure 25 Box plot of episode rewards for all DQN models only 

 

 

Comparison to baseline 

Looking at the performance metrics, improvements were observed from using a DQN approach 

compared to an FT method used in traditional traffic light control systems. From “Table 9”, 

MLP-2 reduced ATL by 16.56% compared to MLP-0 and MLP-1 where both had similar 

outcomes (-4.59% and -4.49% — respectively). Contrastingly, MLP-2 had the worst reduction 

in AWT whilst MLP-0 had the highest (-9.60% and -19.18% — respectively). Nonetheless, 

MLP-2 again showed the best outcome for VC by reducing the number of vehicles at the end 

of the simulation by 11.26% compared to the NO-AI approach. Interestingly, MLP-1 

performed marginally worse than the NO-AI scenario with increasing VC by 0.10%. Finally, 

regarding the performance of the DQN models, MLP-2 showed the largest ER with a mean 

value of 4084.75 across all episodes. MLP-1 followed with 2926.75 and MLP-0 with 2044.09.  

 

Table 9 Performance metric averages (with % change from using NO-AI) 

 Avg. time loss (s) Avg. waiting time (s) Vehicle count Episode reward 

MLP-0 1549.88 (-4.59%) 152.05 (-19.18%) 440.12 (-2.21%) 2044.09 

MLP-1 1551.53 (-4.49%) 159.75 (-15.09%) 450.50 (0.10%) 2926.75 

MLP-2 1355.47 (-16.56%) 170.08 (-9.60%) 399.38 (-11.26%) 4084.75 

NO-AI 1624.44 188.14 450.06 - 
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Discussion 

Summarising the key rationales of this work, the goal is to extend the existing pool of research 

by considering additional constraints. Therefore, the research question/statement is to 

understand the performance of a multi-intersection RL model that utilises the vehicle detection 

range of intersections in a real-world network. Other researchers and authorities could use this 

research in areas like edge-based computing where models are deployed locally at the data 

source — the signalled intersections. Again, the hypothesis was that the implementation that 

this project has taken will observe an improvement in all performance metrics compared to an 

FT approach. However, it was anticipated that the outcomes would not be as substantial as 

those from previous authors due to the additional constraints of lane area detectors and the real-

world environment. 

 

From the results, it seems that the hypothesis holds for the expectation that improvements were 

observed in comparison to the FT method but less in comparison to previous work. As 

mentioned, MLP-2 showed the greatest improvements in ATL and VC (16.56 and 11.26 — 

respectively) where it also yielded the largest sum of ER at 4084.75. Previous research was 

able to produce a larger reduction in waiting time of 23% compared to the best improvement 

observed in this project which was at 19.18% (Choe et al. 2018). Differences between this 

research and the aforementioned article were the inclusion of an LSTM in the neural network 

used for the DQN and differences in the structure of the environment’s state. This could suggest 

that traffic light control systems using DQNs should consider a model that can retain 

information for a longer duration like an LSTM. Nonetheless, it is important to consider the 

trade-off between using a more complex model that could increase the training time — 

subsequently the hardware and costs. It can be argued that achieving a slightly better outcome 

in waiting time whilst requiring more hyperparameter tuning and the above disadvantages may 

not be suitable. 

 

Another comparable study reported even higher improvements in waiting time. The authors 

reported a 48% improvement whilst comparing it to an FT method (Joo and Lim 2021). 

Interestingly, unlike this study, it was also reported that the standard deviation was 45% lower 

than the FT group. In comparison, the deviation with the best model for this performance metric 

in this study reported an increase of 43.93%. Though the authors did not specify the exact 

structure of the neural network used, it is plausible that these differences in outcomes could 
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relate to the realism of the simulation. In Joo and Lim (2021), a singular intersection of 8 

actions was implemented. Similarly, the authors opted to use a vector of lane queue lengths as 

the state input for the DQN. Asides from that, the methodologies greatly differed which allows 

for new discussion around the performance differences between a study that uses a 

representation of real-world infrastructure and one that does not. In this case, using an 

artificially created singular intersection with more choice of actions yielded much better 

outcomes. 

 

As introduced in the methodology, this study has implemented a dynamic approach to DQN 

state-action initialisation — meaning that each intersection is its own agent with a particular 

set of states and actions. This was an attempt to introduce a new approach to isolate each 

intersection so that they did not depend on the states of surrounding intersections. Having a 

model train independently gains an advantage in a real-world scenario where traffic light 

systems could go offline — and would not affect this agent. A model that was trained with 

states from surrounding agents may result in a poor choice of actions when traffic lights are 

not working. However, some authors have taken this opposing method as using surrounding 

data can also improve the performance of smart intersections across the network. It was 

discovered that an extended DQN solution which included a database that distributed data 

amongst all agents reported at most a 16.7% decrease in waiting time compared to a simpler 

DQN approach (Liu et al. 2017). Nonetheless, this could gather scalability issues as the size of 

the road network increases — meaning more considerations would be needed to implement 

such a method in the real world. For instance, the storing and distribution of the intersection 

data across the network, load balancing during high/low traffic hours, and preventing the DQN 

from generalising too much due to a large amount of data. In contrast, using a localised method 

could help avoid these issues — by training a local DQN that can recognise traffic patterns and 

optimise signal timings at any given moment. 

 

Other studies have also reported positive outcomes for AWT and ATL from using a more 

complex DQN. For instance, using a method the authors called a ‘risk-sensitive’ approach 

gathered an 18.2% and 13.2% reduction in AWT and ATL — respectively (R et al. 2022). The 

authors introduced the concept of distributional reinforcement learning (DRL) which differs 

from RL on the basis that the algorithm returns the distribution rather than a scalar value at the 

given state. The distribution returned by the DRL represents the probability of different return 

values that the agent can obtain (Bellemare et al. 2022). In short, the model differed 
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substantially from the simpler MLPs used in this research. Hence, it could be plausible to 

assume that their improvements were greater due to the inclusion of a more complex network 

— much like the previous discussion about using LSTMs. However, from the approach that 

they have specified, it could be a combination of the DRL and the much higher detector range 

of 70m used in comparison to the 15–20m range used in this study. Yet again, this supports the 

hypothesis as it seems that adding more constraints to the visibility of the DQN reduced its 

effectiveness. Furthermore, R et al. (2022) used fixed durations for each phase of the traffic 

light where the DQN would decide which phase to run sequentially. Controlling this duration 

could have resulted in a more stable and consistent flow of traffic — rather than letting the 

agent decide when and for how long each phase will last. Nonetheless, the drawbacks of using 

a partial timing method could be that vehicles are halted at traffic lights for longer than needed. 

 

A common pattern across previous research revealed that complex networks generally obtained 

better performance outcomes. This mostly held true in this study’s experiment results. As per 

“Figure 25”, for each increasingly more complex variant of the MLP used in the DQN, higher 

rewards were recorded where MLP-2 showed the largest value of ER. With each hidden layer 

in MLP-2, the number of neurons reduced until the output layer. This is to generalise the 

information passing through the network where the weights were adjusted accordingly to the 

importance of the feature and its derivations. Though the neural networks used in previous 

studies varied — this pattern was common and was used to extend CNNs and LSTMs (Du et 

al. 2019, Ge et al. 2019, Zhao et al. 2019). Once again, the rationale for using an MLP in this 

study was due to the simplistic nature of the state input as only lane queue lengths were 

considered. Hence, implementing a CNN or LSTM seemed computationally expensive for this 

particular usage. 

Conclusion 

In short, the outcome was as expected from the hypothesis that improvements would be 

observed compared to the baseline but not in comparison to previous research. From the 

findings, it seems that using a deep Q-learning agent built with neural networks that has more 

hidden layers which generalise passing information can produce good improvements. The 

solution implemented in this study was able to reduce average time loss from driving at slower 

speeds due to traffic by 16.56%. The average waiting time of vehicles halted at an intersection 

was also reduced by 19.18%, and the number of vehicles on the road network was less by 

11.26%. 
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Limitations 

As previously eluded, some limitations exist in this study’s methodology and implementation. 

For instance, there are no yellow phases between each active phase for the traffic light 

intersections. This was to reduce the complexity of the simulation and subsequently impacted 

the realism of the scenario. Moreover, other vehicle types and pedestrians were not considered. 

Also, the state gathered from the environment could be extended with more information. Doing 

this adds more features for the model to analyse — distinguishing relationships between them. 

Adding these would generalise the model but broaden the scope of this study excessively. Since 

the implementation of the agents in this project differed from other studies due to dynamically 

initialised neural networks, a more controlled approach was taken to assess the suitability of 

this implementation. 

 

Future research 

Some key areas to tackle include the ones mentioned in the limitations. As of the current 

literature, none found in the review depicted the use of yellow phases in multi-intersection 

DQNs where state and action were dynamically instantiated. A possible solution could include 

using a queue to execute the phases as the agent predicts the action to take with yellow phases 

inserted between each action. However, this could create a situation where the agent appends 

a new phase to this queue at every time step which is not desired as it could create a scenario 

where queued phases are executed much later than intended. Alternatively, an implementation 

could include a simple guard logic that returns a yellow phase action whenever the agent 

switches active phases. Moreover, other vehicle types and pedestrians could also be considered 

in upcoming research. These would improve the implementation shown in this project — 

adding to the DQN’s ability to generalise the understanding of its states and subsequently 

becoming more adaptive to real-world scenarios. 

Project Management 

(adapted from previous work, Lau 2022) 

 

Clear planning has assisted in meeting the requirements for this project within the given 

timeframe following the project timeline as per “Figure 26”. The pilot study justified the need 

for this research and its feasibility. This report began with the construction of the training 

environment using SUMO and its first-party tools utilising OSM to generate the road network. 
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The goal of this phase was to determine a suitable environment that captures the key aspects 

of road networks that causes congestion at intersections. Subsequently, the creation of the agent 

followed. Using a combination of standard and third-party libraries, the software artefact 

facilitated the training of the agent, simulation stepping, replay memory sampling, gathering 

observations from the SUMO environment, and taking action using the predicted Q-values. 

 

A consistent workflow was present throughout the project due to the implementation of 

DevOps tools like pre-commits, linters, and type-checkers. The source code can be accessed 

through GitHub as a remote repository. Additionally, a Dockerfile is also included which can 

help run the project in a pre-specified environment and minimise the steps needed to setup. 

Installing the dependencies and following the instructions will obtain the same result. Through 

trial-and-error, debugging, and mock experiments, the training and optimisation of the model 

began just after halfway through the project — where results were logged using tensorboard. 

Hyperparameters were tuned following and inspired by specifications from previous research. 

 

After gathering the results, statistical analysis was performed between each type of ANN model 

used for the agent and evaluated its performance in comparison to the control — being the no 

AI implementation. The write-up began starting with the order of introduction, methods, 

discussion, conclusion, and finishing the abstract last. The final step was to add in any 

supplementary materials like appendices and proof the draft copies — which was conducted in 

the final days before submission. 

 

“Table 10” illustrates the workflow of this project, its expectation and the actual outcome for 

each task. It is clear that from the beginning, tasks were completed on-time — sometimes 

earlier. However, as the project progressed into its later stages, issues started arising. For 

instance, the training and optimising of the model took longer than expected due to bugs and 

poor hyperparameter tuning. Personal time constraints arose from this period which made 

meeting the expected end date difficult. Nonetheless, the training of the DQN was subsequently 

resolved by running all experiments on the local machine. Initially, a cloud service named 

Hetzner was used to train the model on a billed dedicated cluster. However, the hardware was 

not sufficient and pricing for more resources was not acceptable. Hence, some refactoring was 

required which took more time due to SUMO requiring a specific setup depending on the 

system. In short, much of the delays were caused by an oversight in regard to the hardware 

requirements needed for training and also some unexpected problems with the artefact. To 
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prevent a similar scenario in the future, unit testing could help identify areas that do not 

conform to expectations — whilst a coverage report can help understand which areas of the 

source code could be vulnerable to package upgrades. 

 

Figure 26 Gantt of the project timeline 

 

 

Table 10 List of tasks, their expected hours, and the actual time spent on the report 

Task Expected Hours Actual Hours 

Setup SUMO environment 15 10 
Build neural network model 10 4 

Build agent with replay memory 20 4 

Add epsilon-greedy strategy to agent 5 2 

Add training methods 5 4 

Add main loop and logging 5 6 
Train and optimise model 20 27 

Gather results 20 4 

Process data 6 15 

Analyse results 10 4 

Write introduction 10 12 
Adapt pilot study for background 10 4 

Write methods 10 23 

Write discussion 20 21 

Write conclusion 2 1 

Write limitations and future work 2 1 
Write abstract 2 1 

Proofing 5 10 

 

  

29/5/22 18/6/22 8/7/22 28/7/22 17/8/22 6/9/22 26/9/22

Pilot study - Background research

Pilot study - Justification

Pilot study - Proofing

Dissertation - Setup SUMO environment

Dissertation - Build neural network model

Dissertation - Build agent with replay memory

Dissertation - Add epsilon-greedy strategy to agent

Dissertation - Add training methods

Dissertation - Add main loop and logging

Dissertation - Train and optimise model

Dissertation - Gather results

Dissertation - Process data

Dissertation - Analyse results

Dissertation - Write introduction

Dissertation - Adapt pilot study for background

Dissertation - Write methods

Dissertation - Write discussion

Dissertation - Write conclusion

Dissertation - Write limitations and future work

Dissertation - Write abstract

Dissertation - Proofing

Presentation - Write introduction

Presentation - Write methods

Presentation - Write discussion and conclusion

Presentation - Proofing
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Appendices 

 

Appendix A: Ethical approval 
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Appendix B: Replay memory implementation 
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Appendix C: Experience named tuple 

 

 

Appendix D: DQN target network training implementation 

 

 

Appendix E: A custom command-line interface (CLI) for the artefact  
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Appendix F: Instantiate a list of agents for every traffic light intersection 

 

 

Appendix G: Main loop for reinforcement learning agents 
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