Measuring Speech Intelligibility Using a Binaural Decode of a First-Order Ambisonics Microphone

Name: Tom Cotter Degree: BSc (Hons) Live Sound Technology Supervisor: Matthew Hickling

1 INTRODUCTION

Current standardised methods of measuring speech intelligibility are non-inclusive of the human auditory system's binaural advantages; specifying omnidirectional receivers (British Standards Institution, 2011) (Wijngaarden & Drullman, 2008, p. 4514).

Research has been completed into replacing omnidirectional receivers with Head and Torso Simulators (HATS). However, these are not commercially or practically viable. In solution, a binaural decode of a first-order Ambisonics microphone (DUT) was implemented.

2 AIM

To investigate using a binaural decode of a First-Order Ambisonics (FOA) microphone to measure speech intelligibility.

3 OBJECTIVES

- With a noise source at arbitrary azimuths, gather STIPA results for various decoders and synthesis approaches and compare to HATS
- Conduct STIPA measurements in accordance with BS 60268-16:2011, setting a noise source at multiple azimuth's
- 3. Repeat measurements using the HATS and DUT
- 4. Repeat all measurements in contrasting acoustic environments
- 5. Measure interaural level differences of the HATS and DUT

4 METHODOLOGY

- STIPA measurements were complete in hemi-anechoic, semireverberant and reverberant environments (Wijngaarden & Drullman, 2008) (Tang et. al., 2017)(Andreopoulou et. al., 2015)
- The target source was fixed on-axis to the receiver; with a noise source at NR52 & NR63 masking levels rotated in 15° increments
- Measurements were conducted in accordance with BS 60268-16:2011 to provide standardised data and repeated using the HATS and DUT
- The DUT was calibrated to level match the HATS when no masking was present
- DUT performance was measured through the extent at which STIPA results resembled those obtained with a HATS

6 RESULTS AND DISCUSSION

- Encapsulation of diffuse components in parametric decoders mitigate better-ear listening (McCormack & Delikaris-Manias, 2019, p. 2)
- Magnitude Least-Squares (MLS) decoding and diffuse field correction improves shadowed ear accuracy where partial shadowing occurs
- Diffuse field correction reduces accuracy where opaque shadowing of high frequency occurs and mitigates pinna shadowing
- Normalising signal vectors in the binaural decode decreases accuracy due to altering signal-to-noise ratio's

Hemi-Anechoic Chamber - Parameter Crossover Angle

- 'W' trend exhibited in the above figure is a result of spreading of the contralateral pressure lobe resulting from diffraction due to FOA low resolution (Politis, et al., 2018)
- Low resolution caused sound field localisation errors, inducing error no matter the synthesis approach (Politis, et al., 2018)
- Accuracy decreases at lower masking levels and longer reverberation times due to localisation error increasing

MLS With Diffuse Correction in All Environments - Masking NR63

7 CONCLUSION

- 1. Low resolution of FOA incorrectly encodes the sound field, with error increasing for lower masking levels and in diffuse fields
- 2. For future investigations with a higher-order microphone:
 - a) Must use a linear decoder
 - b) MLS is most accurate synthesis method
 - c) Straight decodes and diffuse field correction improve accuracy for opaque and partial shadowing of high frequencies respectively; with the latter underestimating pinna shadowing

REFERENCES

ANDREOPOULOU, A., BEGAULT, D. R. & KATZ, B. F. G., 2015. Inter-Laboratory Round Robin HRTF Measurement Comparison. s.l.:IEEE Journal of Selected Topics in Signal Processing.
BRITISH STANDARDS INSTITUTION, 2011. Sound System Equipment Part 16: Objective rating of Speech intelligibility by speech transmission index. s.l.:BSI Standards Publication.

McCORMACK, L. & DELIKARIS-MANIAS, S., 2019. Parametric First-Order Ambisonic Decoding for Headphones Utilising the Cross-pattern Coherence Algorithm. Is EEA Spatial Audio Signal Processing Symposium.

POLITIS, A., TERVO, S. & PULKKI, V., 2018. COMPASS: Coding and Multidirectional Parameterization of Ambisonic Sound Scenes. s.l.:IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
TANG, Y., LIU, Q., WANG, W. & COX, T. J., 2017. A non-intrusive method for estimating binaural speech intelligibility from noise-corrupted signals captured by a pair of microphones. s.l.:Elsevier B.V.
WIJNGAARDEN, J. V. & DRULLMAN, R., 2008. Binaural Intelligibility Prediction based on the speech transmission index. Journal of the Acoustical Society of America, Volume 123, pp. 4514-4523.